Boeira, E, Bordignon V, Eckhard D, Campestrini L.
2018.
Comparing MIMO Process Control Methods on a Pilot Plant, Aug. Journal of Control, Automation and Electrical Systems. 29:411–425., Number 4
AbstractThis work presents a comparison among three different control strategies for multivariable processes. The techniques were implemented in a pilot plant with coupled control loops, where all steps used to design the controllers were described allowing to establish a trade-off between algorithm complexity, information needed from the process and achieved performance. Two data-driven control techniques are used: multivariable ultimate point method to design a decentralized PID controller and virtual reference feedback tuning to design a centralized PID controller. A mathematical model of the process is obtained and used to design a model-based generalized predictive controller. Experimental results allow us to evaluate the performance achieved for each method, as well as to infer on their advantages and disadvantages.
Boeira, EC, Eckhard D.
2018.
Multivariable Virtual Reference Feedback Tuning with Bayesian regularization. XXII Congresso Brasileiro de Automática. :1–8., João Pessoa: {SBA} Sociedade Brasileira de Automática
AbstractThis paper proposes the use of regularization on the multivariable formulation of the Virtual Reference Feedback Tuning (VRFT). When the process to be controlled has a significant amount of noise, the standard VRFT approach, that uses the instrumental variable technique, provides estimates with very poor statistical properties. To cope with that, this paper considers the use of regularization on the estimation procedure, reducing the covariance error at the cost of inserting a small bias. Also, this paper explains different types of regularization matrices and presents the methodology to tune these matrices. In order to demonstrate the benefits of the proposed formulation, a numerical example is presented.