Publications

Ordenar por: Autor [ Título  (Desc)] Tipo Ano
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
U
Unified Formulation for Inhomogeneity-Driven Instabilities in the Lower-Hybrid Range, Silveira, O. J. G., Ziebell L. F., Gaelzer R., and Yoon P. H. , Physical Review E, February, Volume 65, Number 036307, p.1–11, (2002) Abstract

n/a

A local dispersion relation that describes inhomogeneity-driven instabilities in the lower-hybrid range is derived following a procedure that correctly describes energy exchange between waves and particles in inhomogeneous media, correcting some inherent ambiguities associated with the standard formalism found in the literature. Numerical solutions of this improved dispersion relation show that it constitutes a unified formulation for the instabilities in the lower-hybrid range, describing the so-called modified two-stream instability, excited by the ion cross-field drift, including the ion Weibel instability, and also describing the lower-hybrid drift instability, which is due to inhomogeneity effects on the electron population.

T
Two-Dimensional Ray-Tracing Studies in the Source of Auroral Kilometric Radiation, Gaelzer, R., Ziebell L. F., and Schneider R. S. , 1łho{o} Congresso Brasileiro de Física dos Plasmas, December, Santos - Brasil, p.81–85, (1991) Abstract

n/a

n/a
Two-dimensional quasilinear beam–plasma instability in inhomogeneous media, Ziebell, L. F., Yoon P. H., Pavan J., and Gaelzer R. , Plasma Physics and Controlled Fusion, August, Volume 53, Number 8, p.085004, (2011) AbstractWebsite

n/a

Beam–plasma instability of inhomogeneous media is an important problem associated with practical applications in space and laboratory plasmas. Previous investigations of the spatially inhomogeneous beam–plasma instability problem assumed one-dimensional velocity and wave number space. This paper extends the available theory to two-dimensional velocity and wave number space. A fully self-consistent set of quasilinear particle and wave kinetic equations is solved for two-dimensional velocity and wave number space in both time and one-dimensional spatial inhomogeneity scale length. The analytical equations include induced and spontaneous emission processes, as well as convective and dispersive effects.

Two-dimensional nonlinear dynamics of bidirectional beam-plasma instability, Pavan, J., Ziebell L. F., Gaelzer R., and Yoon P. H. , Journal of Geophysical Research, January, Volume 114, Number A01106, (2009) AbstractWebsite

n/a

Solar wind electrons near 1 AU feature wide-ranging asymmetries in the superthermal tail distribution. Gaelzer et al. (2008) recently demonstrated that a wide variety of asymmetric distributions results if one considers a pair of counterstreaming electron beams interacting with the core solar wind electrons. However, the nonlinear dynamics was investigated under the simplifying assumption of one dimensionality. In the present paper, this problem is revisited by extending the analysis to two dimensions. The classic bump-on-tail instability involves a single electron beam interacting with the background population. The bidirectional or counterstreaming beams excite Langmuir turbulence initially propagating in opposite directions. It is found that the nonlinear mode coupling leads to the redistribution of wave moments along concentric arcs in wave number space, somewhat similar to the earlier findings by Ziebell et al. (2008) in the case of one beam-plasma instability. However, the present result also shows distinctive features. The similarities and differences in the nonlinear wave dynamics are discussed. It is also found that the initial bidirectional beams undergo plateau formation and broadening in perpendicular velocity space. However, the anisotropy persists in the nonlinear stage, implying that an additional pitch angle scattering by transverse electromagnetic fluctuations is necessary in order to bring the system to a truly isotropic state.

Two-dimensional nonlinear dynamics of beam-plasma instability, Ziebell, L. F., Gaelzer R., Pavan J., and Yoon P. H. , Plasma Physics and Controlled Fusion, August, Volume 50, Number 8, p.085011 (15pp), (2008) AbstractWebsite

n/a

Numerical solutions for equations of weak turbulence theory that describe the beam-plasma interaction are obtained in two dimensions (2D). The self-consistent theory governs quasilinear processes as well as nonlinear decay and scattering processes. It is found that the Langmuir turbulence scatters into a quasi-circular ring spectrum in 2D wave number space, accompanied by quasi-isotropic heating of the electrons. When projected onto the one-dimensional (1D) space, 2D Langmuir turbulence spectrum appears as an inverse cascade, when in reality, the wavelength of the turbulence does not change but only the wave propagation angle changes. These findings are similar to those obtained in a previous analysis in which scattering processes were not taken into account, but it is found that the scattering term leads to a quantifiably higher scattering rate.

Two dimensional kinetic analysis of electrostatic harmonic plasma waves, Fonseca-Pongutá, Éber C., Ziebell Luiz F., Gaelzer Rudi, and Yoon Peter H. , Physics of Plasmas, Volume 23, Issue 062310, (2016) Abstract062310_1_am.pdfWebsite

Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum, Ziebell, L. F., Yoon P. H., Gaelzer R., and Pavan J. , Physics of Plasmas, January, Volume 21, Number 1, (2014) AbstractWebsite

A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.

A Time-Reversal Invariant Formulation of Wave Absorption in Weakly Inhomogeneous MagnetoPlasmas, Gaelzer, R., Schneider R. S., and Ziebell L. F. , 1994 International Conference on Plasma Physics, November, Volume 2, Foz do Igua\c cu - Brasil, p.33–36, (1994) Abstract

n/a

n/a
S
Spontaneous emission of electromagnetic radiation in turbulent plasmas, Ziebell, L. F., Yoon P. H., Simões F. J. R., Gaelzer R., and Pavan J. , Physics of Plasmas, January, Volume 21, Number 1, (2014) AbstractWebsite

Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

Solar Wind Strahl Broadening by Self-generated Plasma Waves, Pavan, J., Viñas A. F., Yoon P. H., Ziebell L. F., and Gaelzer R. , The Astrophysical Journal Letters, June, Volume 769, Number 2, p.L30, (2013) AbstractWebsite

n/a

This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

Solar Wind Electron Acceleration via Langmuir Turbulence, Yoon, Peter H., Ziebell L. F., Gaelzer R., Wang Linghua, and Lin Robert P. , Terrestrial, Atmospheric and Oceanic Sciences, April, Volume 24, Number 2, p.175–182, (2013) AbstractWebsite

n/a

The solar wind electrons observed at 1 AU are characterized by velocity distribution functions (VDF) that deviate from the Maxwellian form in a high energy regime. Such a feature is often modeled by a kappa distribution. In the present paper a self-consistent theory of quiet-time solar wind electrons that contain a power-law tail component, f ∝ v-α is discussed. These electrons are assumed to be in dynamic equilibrium with enhanced electrostatic fluctuations with peak frequency near the plasma frequency (i.e., the Langmuir turbulence). In order to verify the theoretical prediction, the solar wind electrons in the high-energy range known as the super-halo distribution detected by WIND and STEREO spacecraft are compared against the theoretical model where it was found that the theoretical power-law index is intermittent with regard to the observed range of indices, thus indicating that the turbulent equilibrium model of suprathermal solar wind electrons may be valid.

Simulation of asymmetric solar wind electron distributions, Ryu, C. - M., Ahn H. - C., Rhee T., Yoon P. H., Ziebell L. F., Gaelzer R., and Vinas A. F. , Physics of Plasmas, June, Volume 16, Number 6, p.062902, (2009) AbstractWebsite

n/a

The electron distributions detected in the solar wind feature varying degrees of anisotropic high-energy tail. In a recent work the present authors numerically solved the one-dimensional electrostatic weak turbulence equations by assuming that the solar wind electrons are initially composed of thermal core plus field-aligned counterstreaming beams, and demonstrated that a wide variety of asymmetric energetic tail distribution may result. In the present paper, the essential findings in this work are tested by means of full particle-in-cell simulation technique. It is found that the previous results are largely confirmed, thus providing evidence that the paradigm of local electron acceleration to high-energy tail by self-consistently excited Langmuir turbulence may be relevant to the solar wind environment under certain circumstances. However, some discrepancies are found such that the nearly one-sided energetic tail reported in the numerical solution of the weak turbulence kinetic equation is not shown.

R
Ray Tracing Studies on Wave Propagation in the Auroral Cavities, Gaelzer, R., Ziebell L. F., and Schneider R. S. , 2łho{o} Encontro Brasileiro de Física dos Plasmas, October, Serra Negra - Brasil, p.317–321, (1993) Abstract

n/a

n/a
Ray Tracing Studies on Auroral Kilometric Radiation in Finite-Width Auroral Cavities, Gaelzer, R., Ziebell L. F., and Schneider R. S. , Journal of Geophysical Research, May, Volume 99, Number A5, p.8905–8916, (1994) Abstract

n/a

We investigate propagation and amplification of the auroral kilometric radiation over the geomagnetic poles using a particular model for the physical parameters in the auroral zone, which takes into account density gradients perpendicular to the geomagnetic field. The propagation of the waves is investigated with the canonical set of equations of the geometrical optics, taking into account thermal effects and considering both the energetic and the background electron populations, with the components of the dielectric tensor calculated in the locally homogeneous plasma approximation. It is shown that the spatial scale of inhomogeneity perpendicular to the magnetic field is an important factor in the amplification, although less favorable than indicated by previous studies using the method of Poeverlein to obtain the trajectory of the radiation.

P
Propagation and Amplification of Auroral Kilometric Radiation in Finite Width Auroral Cavities, Gaelzer, R., Ziebell L. F., and Schneider R. S. , Journal of Geophysical Research, December, Volume 97, Number A12, p.19299–19310, (1992) Abstract

n/a

We investigate amplification of the auroral kilometric radiation over the geomagnetic poles. The physical parameters needed for the calculation are obtained from a particular model that approximately reproduces the conditions in the auroral zone, taking into account density gradients perpendicular to the geomagnetic field and also the parallel magnetic field gradient. The components of the dielectric tensor are calculated in the locally homogeneous plasma approximation, and the dispersion relation is exactly solved with all harmonics and powers of the Larmor radius needed for the convergency of the solution. We also make a ray tracing study in the geometrical optics approximation, using the method of Poeverlein. The ray tracing study shows that the spatial scale of inhomogeneity, perpendicular to the magnetic field, is a very important factor in the amplification and that the distance to obtain a given amplification can be substantially reduced when the density gradient is increased.

Plasma Emission by Weak Turbulence Processes, Ziebell, L. F., Yoon P. H., Gaelzer R., and Pavan J. , The Astrophysical Journal Letters, Volume 795, Number 2, p.L32, (2014) AbstractWebsite

The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

Plasma Emission by Nonlinear Electromagnetic Processes, Ziebell, L. F., Yoon P. H., Petruzzellis L. T., Gaelzer R., and Pavan J. , The Astrophysical Journal, Volume 806, Issue 2, Number 2, p.237, (2015) AbstractWebsite

The plasma emission, or electromagnetic (EM) radiation at the plasma frequency and/or its harmonic(s), is generally accepted as the radiation mechanism responsible for solar type II and III radio bursts. Identification and characterization of these solar radio burst phenomena were done in the 1950s. Despite many decades of theoretical research since then, a rigorous demonstration of the plasma emission process based upon first principles was not available until recently, when, in a recent Letter, Ziebell et al. reported the first complete numerical solution of EM weak turbulence equations; thus, quantitatively analyzing the plasma emission process starting from the initial electron beam and the associated beam-plasma (or Langmuir wave) instability, as well as the subsequent nonlinear conversion of electrostatic Langmuir turbulence into EM radiation. In the present paper, the same problem is revisited in order to elucidate the detailed physical mechanisms that could not be reported in the brief Letter format. Findings from the present paper may be useful for interpreting observations and full-particle numerical simulations.

PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS, Ziebell, Luiz F., Petruzzellis Larissa T., Yoon Peter H., Gaelzer Rudi, and Pavan Joel , The Astrophysical Journal, Volume 818, Issue 61, (2016) AbstractWebsite

The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly
accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.
Key words: plasmas – radiation mechanisms: non-thermal – solar wind – Sun: radio radiation – turbulence – waves

Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations, Simões, F. J. R., Pavan J., Gaelzer R., Ziebell L. F., and Yoon P. H. , Physics of Plasmas, October, Volume 20, Number 10, (2013) AbstractWebsite

n/a

In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

O
One-dimensional electromagnetic simulation of multiple electron beams propagating in space plasmas, Simões Júnior, F. J. R., Alves M. V., and Gaelzer R. , Journal of Geophysical Research, June, Volume 115, Number A6, p.A06105, (2010) AbstractWebsite

n/a

It is by now well known that electron beams play an important role in generating radio emissions such as type II and type III radio bursts, commonly observed by spacecraft in the interplanetary medium. Electron beams streaming back from Earth's bow shock into the solar wind have been proposed as a possible source for the electron plasma waves observed by spacecraft in the electron foreshock. Recent observations suggest that during the natural evolution of the foreshock plasma, multiple electron beams could be injected over a period of time, losing their individual identity to coalesce into a single beam. In this work, we use an electromagnetic particle-in-cell (PIC) code &\#8220;KEMPO 1D, adapted&\#8221; to simulate two electron beams that are injected into a plasma at different times. The first beam disturbs the background plasma and generates Langmuir waves by electron beam-plasma interaction. Subsequently, another beam is inserted into the system and interacts with the first one and with the driven Langmuir waves to produce electromagnetic radiation. The results of our simulation show that the first beam can produce electrostatic harmonics of the plasma frequency, while the second beam intensifies the emission at the harmonics that is produced by the first one. The behavior of the second beam is strongly determined by the preexisting Langmuir wave electric fields. The simulations also show, as a result of the interaction between both beams, a clear nonlinear frequency shift of the harmonic modes as well as an increase of electromagnetic and kinetic energies of the wave-particle system.

On the Onsager symmetry of the effective dielectric tensor for Plasmas in inhomogeneous magnetic field, Schneider, R. S., Ziebell L. F., and Gaelzer R. , Brazilian Journal of Physics, December, Volume 34, Number 4B, p.1645–1650, (2004) Abstract

n/a

The prEservation of Onsager symmetry for the effective dielectric tensor is discussed for a homogeneous Plasma immersed in a inhomogeneous magnetic ?eld, using the unperturbed orbits correct up to order $k\_B$, which is the scalelength of the field inhomogeneity. General features of the calculation of the components of the tensor are discussed and detailed calculations are developed for the $zz$ component, which is shown to satisfy the conditions for Onsager symmetry, in agreement with prEvious results obtained using less prEcise exprEssions for the unperturbed orbits.

On the dimensionally correct kinetic theory of turbulence for parallel propagation, Gaelzer, R., Yoon P. H., Kim Sunjung, and Ziebell L. F. , Physics of Plasmas, Volume 22, Issue 3, Number 3, (2015) AbstractPDFWebsite

Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectively emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.

Obliquely propagating {A}lfvén waves in a Maxwellian dusty plasma, Gaelzer, R., de Juli M. C., Schneider R. S., and Ziebell L. F. , Plasma Physics and Controlled Fusion, January, Volume 51, Number 1, p.015011 (17pp), (2009) AbstractWebsite

n/a

A kinetic formulation developed to analyze wave propagation in dusty plasmas, which takes into account the charge variation of the dust particles, is utilized to study the propagation and damping of Alfven waves propagating in oblique directions relative to the ambient magnetic field. A dusty plasma containing spherical and immobile dust grains in a homogeneous ambient magnetic field is considered. The charging process of the dust grains is assumed to be associated with the capture of electrons and ions by the dust particles during inelastic collisions between them and plasma particles. The dispersion relation and the damping rates of obliquely propagating Alfven waves are obtained assuming Maxwellian distributions for electrons and ions in equilibrium. For the numerical analysis of the dispersion relation we use the average values of the inelastic collision frequency as an approximation, instead of the momentum dependent expressions originally derived in the kinetic formulation, and study the modifications which the presence of the dust particles causes in both the propagation and the damping of the Alfven waves. In particular is discussed the competition between the different damping mechanisms, namely, the Landau damping and the damping associated with the dust charge variation, and it is shown that the inelastic collision frequency plays a pivotal role in the magnitude of the damping rates.

Obliquely propagating electromagnetic waves in magnetized kappa plasmas, Gaelzer, Rudi, and Ziebell Luiz F. , Physics of Plasmas, Volume 23, Issue 022110, (2016) Abstractarxiv.pdfarXiv.org

DOI: http://dx.doi.org/10.1063/1.4941260

Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, the formalism introduced by Ref. 1 is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions, such as the bi-kappa or product-bi-kappa.