RUDI GAELZER
Departamento de Física - Instituto de Física - Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500 - Caixa Postal 15051 - 91501-970 - Porto Alegre-RS - Sala N206 (Prédio 43134) (rudi.gaelzer@ufrgs.br) (email)
Av. Bento Gonçalves, 9500 - Caixa Postal 15051 - 91501-970 - Porto Alegre-RS - Sala N206 (Prédio 43134) (rudi.gaelzer@ufrgs.br) (email)
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
n/a