Publications

Export 17 results:
Ordenar por: [ Autor  (Asc)] Tipo Ano
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Balbuena, C, Brito C, Stariolo DA.  2014.  Structural signatures of (two) characteristic dynamical temperatures in lithium metasilicate. Journal of Physics: Condensed Matter. 26:155104., Number 15: IOP Publishing Abstract

n/a

n/a
Borba, JR, Brito C, Migowski P, Vale TB, Stariolo DA, Teixeira SR, Feil AF.  2013.  Quantitative characterization of hexagonal packings in nanoporous alumina arrays: a case study. The Journal of Physical Chemistry C. 117:246–251., Number 1: American Chemical Society Abstract

n/a

n/a
Bravi, B, Ravasio R, Brito C, Wyart M.  2020.  Direct coupling analysis of epistasis in allosteric materials, 2020/03/02. PLOS Computational Biology. 16(3):e1007630-.: Public Library of Science AbstractWebsite

n/a

Author summary Allostery in proteins is the property of highly specific responses to ligand binding at a distant site. To inform protocols of de novo drug design, it is fundamental to understand the impact of mutations on allosteric regulation and whether it can be predicted from evolutionary correlations. In this work we consider allosteric architectures artificially evolved to optimize the cooperativity of binding at allosteric and active site. We first characterize the emergent pattern of epistasis as well as the underlying mechanical phenomena, finding the four types of epistasis (Synergistic, Sign, Antagonistic, Saturation), which can be both short or long-range. The numerical evolution of these allosteric architectures allows us to benchmark Direct Coupling Analysis, a method which relies on co-evolution in sequence data to infer direct evolutionary couplings, in connection to allostery. We show that Direct Coupling Analysis predicts quantitatively point mutation costs but underestimates strong long-range epistasis. We provide an argument, based on a simplified model, illustrating the reasons for this discrepancy. Our analysis suggests neural networks as more promising tool to measure epistasis.

Brito, C, Parisi G, Zamponi F.  2013.  Jamming transition of randomly pinned systems. Soft Matter. 9:8540–8546., Number 35: Royal Society of Chemistry Abstract

n/a

n/a
Brito, C, Wyart M.  2007.  Heterogeneous dynamics, marginal stability and soft modes in hard sphere glasses. Journal of Statistical Mechanics: Theory and Experiment. 2007:L08003., Number 08: IOP Publishing Abstract

n/a

n/a
Brito, C, Aranson IS, Chaté H.  2003.  Vortex glass and vortex liquid in oscillatory media. Physical review letters. 90:068301., Number 6: APS Abstract

n/a

n/a
Brito, C, Pavani D, Lima Jr P.  2015.  Meninas na Ciência: atraindo jovens mulheres para carreiras de Ciência e Tecnologia. Revista Gênero. 16, Number 1 Abstract

n/a

n/a
Brito, C, Dauchot O, Biroli G, Bouchaud J-P.  2010.  Elementary excitation modes in a granular glass above jamming. Soft Matter. 6:3013–3022., Number 13: Royal Society of Chemistry Abstract

n/a

n/a
Brito, C, Parisi G, Zamponi F.  2013.  Jamming transition of randomly pinned systems. Soft Matter. 9:8540–8546., Number 35: Royal Society of Chemistry Abstract

n/a

n/a
Brito, C, Ikeda H, Urbani P, Wyart M, Zamponi F.  2018.  Universality of jamming of nonspherical particles. Proceedings of the National Academy of Sciences. 115:11736–11741., Number 46: National Academy of Sciences Abstract

n/a

n/a
Brito, C, Wyart M.  2006.  On the rigidity of a hard-sphere glass near random close packing. EPL (Europhysics Letters). 76:149., Number 1: IOP Publishing Abstract

n/a

n/a
Brito, C, Wyart M.  2009.  Geometric interpretation of previtrification in hard sphere liquids. The Journal of chemical physics. 131:149., Number 2: American Institute of Physics Abstract

n/a

n/a
Brito, C, Vitelli V, Dauchot O.  2016.  Orientational order at finite temperature on curved surfaces. Journal of Statistical Mechanics: Theory and Experiment. 2016:033208., Number 3: IOP Publishing Abstract

n/a

n/a
Brito, C, Lerner E, Wyart M.  2018.  Theory for swap acceleration near the glass and jamming transitions for continuously polydisperse particles. Physical Review X. 8:031050., Number 3: American Physical Society Abstract

n/a

n/a