Publications

Ordenar por: Autor [ Título  (Asc)] Tipo Ano
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
Langmuir condensation by spontaneous scattering off electrons in two dimensions, Ziebell, L. F., Yoon P. H., Gaelzer R., and Pavan J. , Plasma Physics and Controlled Fusion, May, Volume 54, Number 5, p.055012, (2012) AbstractWebsite

n/a

In a pair of recent papers (Ziebell et al 2008 Phys. Plasmas 15 032303, 2008 Plasma Phys. Control. Fusion 50 085011) it was shown, within the context of weak turbulence theory, that the Langmuir turbulence generated by the bump-in-tail instability does not lead to Langmuir condensation (or accumulation of wave energy and momentum in the long-wavelength regime) in two dimensions. The present analysis finds that it is important to include the spontaneous scattering off Langmuir turbulence of the electrons, which is ignored in the customary literature when compared with a similar process involving ions, in order to recover the condensation of Langmuir waves in two dimensions.

Langmuir Turbulence and Suprathermal Electrons, Yoon, P. H., Ziebell L., Gaelzer R., Lin R., and Wang L. , Space Science Reviews, November, Volume 173, Number 1-4, p.1–31, (2012) AbstractWebsite

n/a

Charged particle acceleration takes place ubiquitously in the Universe including the near-Earth heliospheric environment. Typical in situ spacecraft measurements made in the solar wind show that the charged particle velocity distribution contains energetic components with quasi scale-free power-law velocity dependence, f ∼ v − α , for high velocity range. In this Review a theory of quiet-time solar-wind electrons that contain a suprathermal component is discussed, in which these electrons are taken to be in dynamical equilibrium with Langmuir turbulence. This Review includes an overview of the Langmuir turbulence theory, as well as a discussion on asymptotic equilibrium solution of Langmuir turbulence/suprathermal electron system. Theoretical predictions of high-energy electron velocity power-law distribution index is then compared against the recent observations of the superhalo electron velocity distribution made by instruments onboard WIND and STEREO spacecraft. It is shown that the theoretical prediction of velocity power-law index is intermediate to the observed range.