Tópicos em Fı́sica Não Linear, Plasmas e Fluidos: Fı́sica de Plasmas A

Conteúdo de Plasmas A


Plano de ensino (2019/1)

Notas de aula (modelo apresentação)  (Notas de aula Prof. Luiz F. Ziebell, com algumas adições próprias)

Listas de Exercícios
Lista Data de entrega
Lista No. 1 09 de maio de 2019
Lista No. 2 04 de julho de 2019

Sugestões de referências para seminários (data limite: 11/04/2019) Apresentador(a):
Reação de radiação Felipe Russman
Plasmas quânticos Pedro Bearzoti
Formulação fracamente relativística
  • Shkarofsky, I. P., Dielectric Tensor in Vlasov Plasmas Near Cyclotron Harmonics, Phys. Fluids, v. 9, n. 3, p. 561, 1966 (doi)
  • Maroli, C., Petrillo, V., Numerical Calculation of the Weakly Relativistic Dielectric Dyadic for a Vlasov Plasma, Physica Scripta, v. 24, n. 6, p. 955, 1981 (doi)
  • Robinson, P. A., Relativistic Plasma Dispersion Functions, J. Math. Phys., v. 27, n. 5, p. 1206, 1986 (doi)
Formulação totalmente relativística
  • Ziebell, L. F., Electron Cyclotron Absoption for Oblique Propagation in Loss-Cone Plasmas, J. Plasma Phys., v. 39, n. 3, p. 431, 1988 (doi)
  • Kamp, L. P. J., Fully relativistic plasma dispersion function, J. Math. Phys., v. 35, n. 12, p. 6471, 1994 (doi)
  • Melrose, D. B., Covariant Form of Trubnikov's Response Tensor for a Relativistic Magnetized Thermal Plasma, J. Plasma Phys., v. 57, n. 2, p. 479, 1997 (doi)
  • Nikolić, Lj., Pešić, S., Ordinary Waves in Relativistic Plasmas – Arbitrary Wave Propagation Angle, Plasma Phys. Cont. Fus., v. 40, n. 11, p. 1923, 1998 (doi)
Instabilidades em plasmas espaciais
  • Wu, C. S., Kinetic Cyclotron and Synchrotron Maser Instabilities: Radio Emission Processes by Direct Amplification of Radiation, Space Sci. Rev., v. 41, n. 3-4, p. 215, 1985 (doi)
  • Yoon, P. H., Kinetic instabilities in the solar wind driven by temperature anisotropies, Rev. Mod. Plasma Phys., v. 1, n. 1, 2017 (doi)
  • Melrose, D. B., Coherent emission mechanisms in astrophysical plasmas, Rev. Mod. Plasma Phys., v. 1, n. 1, 2017 (doi)
Plasmas empoeirados
  • de Juli, M. C., Schneider, R. S., The dielectric tensor for dusty magnetized Plasmas with variable charge on dust particles, J. Plasma Phys., v. 60, n. 2, p. 243, 1998 (acesso)
  • Momot, A. I., Zagorodny, A. G., Kinetic theory of ion-acoustic waves in dusty Plasmas with grains of different sizes, Physica Scripta, v. 71, n. 5, p. 543, 2005 (doi)
  • Galvão, R. A., Ziebell, L. F., Kinetic theory of magnetized dusty plasmas with dust particles charged by collisional processes and by photoionization, Phys. Plasmas, v. 19, n. 9, 2012 (doi)
Luan Bottin de Toni
Teoria quase-linear
  • Roberson, C., et al., Phys. Rev. Lett., v. 26, n. 5, p. 226, 1971 (doi)
  • Goldman, M. V., DuBois, D. F., Beam‐plasma instability in the presence of low‐frequency turbulence, Phys. Fluids, v. 25, n. 6, p. 1062, 1982 (doi)
  • Koch, R., Wave-particle interactions in Plasmas, Plasma Phys. Cont. Fus., v. 48, n. 12B, p. B329, 2006 (doi)
  • Besse, N., et al., Validity of quasilinear theory: refutations and new numerical confirmation, Plasma Phys. Cont. Fus., v. 53, n. 2, 2011 (doi)
Rodrigo Vidmar
Teoria de perturbação fraca
  • Yoon, P. H., Generalized Weak Turbulence Theory, Phys. Plasmas, v. 7, n. 12, p. 4858, 2000 (doi)
  • Ziebell, L. F., et al., Nonlinear Development of Weak Beam-Plasma Instability, Phys. Plasmas, v. 8, n. 9, p. 3982, 2001 (doi)
  • Yoon, P. H., Statistical theory of electromagnetic weak turbulence, Phys. Plasmas, v. 13, n. 2, 2006 (doi)
  • Yoon, P. H. Weak turbulence theory for beam-plasma interaction, Phys. Plasmas, v. 25, n. 1, 2018 (doi)
  • Lee, S.-Y., et al., Particle-in-cell and Weak Turbulence Simulations of Plasma Emission, Astrophys. J., v. 871, n. 1, 2019 (doi)
Ivanessa Almansa
Plasmas inomogêneos
  • Caldela Filho, R. A., et al., The Dispersion Relation and the Dielectric Tensor of Inhomogeneous Magnetized Plasmas, J. Plasma Phys., v. 42, n. 1, p. 165, 1989 (doi)
  • Gaelzer, R., et al., The Dispersion Relation and the Dielectric Tensor for Magnetized Plasmas with Inhomogeneous Magnetic Field, Phys. Rev. E, v. 51, n. 3, p. 2407, 1995 (doi)
  • Bornatici, M., Maj, O., Geometrical optics response tensors and the transport of the wave energy density, Plasma Phys. Cont. Fus., v. 45, n. 8, p. 1511, 2003 (doi)
Plasmas supertérmicos
  • Mace, R. L., Hellberg, M. A., A dispersion function for Plasmas containing superthermal particles, Phys. Plasmas, v. 2, n. 6, p. 2098, 1995 (doi)
  • Livadiotis, G., Introduction to special section on Origins and Properties of Kappa Distributions: Statistical Background and Properties of Kappa Distributions in Space Plasmas, J. Geophys. Res., v. 120, n. 3, 2015 (doi)
  • Gaelzer, R., Ziebell, L. F., Obliquely propagating electromagnetic waves in magnetized kappa plasmas, Phys. Plasmas, v. 23, n. 2, 2016 (doi)
  • Viñas, A. F., et al., Linear Kinetic Waves in Plasmas Described by Kappa Distributions, In: Kappa Distributions: Theory and Applications in Plasmas, p. 329, 2017 (doi)
  • Meneses, A. R., et al., The oblique firehose instability in a bi-kappa magnetized plasma, Phys. Plasmas, v. 25, n. 11, 2018 (doi)

Rotinas Numéricas
zfn.f90 Calcula a função de Fried & Conte.
muller.f90 Obtém as raízes complexas de uma função analítica unívoca.