FERNANDO HAAS
Instituto de Física - Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves 9500 - Caixa Postal 15051 - CEP 91501-970 - Porto Alegre, RS, Brasil
(email)
Publications
Teaching
Miscelanea
Publications
Export 137 results:
Tagged
XML
BibTex
Ordenar por:
Autor
Tipo
[
Ano
]
2006
Haas, F.
2006.
A onipresença transformadora dos princípios quânticos: desafios e possibilidades
.
Cadernos IHU em Formação . Ano 2, n. 6 (Física - evolução, auto-organização, sistemas e caos):123.
onipresenca_transformadora.pdf
2005
Haas, F.
2005.
Jacobi structures in R3
.
J. Math. Phys. 46(10):102703.
Jacobi_structures.pdf
Haas, F.
2005.
Low-momentum classical mechanics with effective quantum potentials
.
Phys. Rev. B. 71(23):235111.
low_momentum.pdf
Haas, F.
2005.
A magnetohydrodynamic model for quantum plasmas
.
Phys. Plasmas. 12(6):062117.
magnetohydrodynamic_model.pdf
Garcia, LG, Haas F, Goedert J, de Oliveira LPL.
2005.
Modified Zakharov equations for plasmas with a quantum correction
.
Phys. Plasmas. 12(1):012302.
modified_Zakharov.pdf
Haas, F, Garcia LG, Goedert J.
2005.
Quantum Zakharov equations
.
Fourth International Winter Conference on Mathematical Methods in Physics. :015., CBPF, Rio de Janeiro: J. High Energy Phys. (SISSA, WC2004)
quantum_Zakharov.pdf
Haas, F.
2005.
Stochastic quantization of time-dependent systems by the Haba and Kleinert method
.
Int. J. Theor. Phys. 44(1):1.
stochastic_quantization.pdf
2004
Haas, F, Goedert J.
2004.
Lie point symmetries for reduced Ermakov systems
.
Phys. Lett. A. 332(1-2):25.
Lie_point.pdf
2003
Haas, F, Garcia LG, Goedert J, Manfredi G.
2003.
Quantum ion-acoustic waves
.
Phys. Plasmas. 10(10):3858.
quantum_ion_acoustic.pdf
Haas, F, Manfredi G, Goedert J.
2003.
Stability analysis of a three-stream quantum-plasma equilibrium
.
Braz. J. Phys. 33(1):128.
stability_analysis.pdf
2002
Haas, F.
2002.
Anisotropic Bose-Einstein condensates and completely integrable dynamical systems
.
Phys. Rev. A. 65(3):33603.
anisotropic_Bose.pdf
Haas, F, Goedert J.
2002.
Comment on “A note on the construction of the Ermakov-Lewis invariant”
.
J. Phys. A: Math. Gen. 35(46):9943.
comment_note.pdf
Haas, F.
2002.
Generalized Hamiltonian structures for Ermakov systems
.
J. Phys. A: Math. Gen . 35(12):2925.
generalized_Hamiltonian.pdf
Haas, F.
2002.
Noether symmetries for charged particle motion under a magnetic monopole and general electric fields
.
Comp. Appl. Math . 21:743.
Noether_symmetries.pdf
2001
Haas, F, Goedert J.
2001.
Dynamical symmetries and the Ermakov invariant
.
Phys. Lett. A. 279(3-4):181.
dynamical_symmetries.pdf
Haas, F.
2001.
Frobenius theorem and invariants for Hamiltonian systems
.
J. Phys. A: Math. Gen. 34(5):1005.
Frobenius_theorem.pdf
Haas, F, Manfredi G, Goedert J.
2001.
Nyquist method for Wigner-Poisson quantum plasmas
.
Phys. Rev. E. 64(2):026413.
Nyquist_method.pdf
Manfredi, G, Haas F.
2001.
Self-consistent fluid model for a quantum electron gas
.
Phys. Rev. B. 64(7):075316.
self_consistent.pdf
Bodmann, B, Haas F, Goedert J.
2001.
Transformações de simetrias externas-internas acopladas e sua implicação na eletrodinâmica de campos vetoriais fracos-médios
.
Scientia. 12(1):35.
transformacoes_simetrias.pdf
2000
Haas, F, Goedert J.
2000.
Lie symmetries for two-dimensional charged particle motion
.
J. Phys. A: Math. Gen. 33(25):4661.
Lie_symmetries.pdf
Haas, F, Goedert J, Manfredi G.
2000.
Modelos de transporte em plasmas quânticos
.
Scientia. 11(2):01.
modelos_transporte.pdf
Haas, F, Manfredi G, Feix M.
2000.
A multistream model for quantum plasmas
.
Phys. Rev. E. 62(2):2763.
multistream_model.pdf
1999
Haas, F, Goedert J.
1999.
Lie symmetries of generalized Ermakov systems
.
Lecture Notes in Physics (v. 518) - Dynamical Systems, Plasmas and Gravitation. , Heidelberg : Springer-Verlag
Lie_Ermakov.pdf
Haas, F, Goedert J.
1999.
Movimento não relativístico de partícula carregada em campo magnético dependente do tempo – soluções exatas
.
Scientia. 10:101.
movimento_nao_relativistico.pdf
Haas, F, Goedert J.
1999.
Noether symmetries for two-dimensional charged particle motion
.
J. Phys. A: Math. Gen. 32(39):6837.
Noether_symmetries_2D.pdf
« first
‹ previous
1
2
3
4
5
6
next ›
last »
Recent Publications
Derivation of Dirac exchange interaction potential from quantum plasma kinetic theory
Methodological notes on gauge invariance in the treatment of waves and oscillations in plasmas via the Einstein-Vlasov-Maxwell system: Fundamental equations
Two-dimensional fireballs as a Lagrangian Ermakov system
On the damped Pinney equation from Noether symmetry principles
Compton scattering of plasmons
Probing modified plasma waves in non-linear electrodynamics
more