Publications

Export 2 results:
Ordenar por: [ Autor  (Asc)] Título Tipo Ano
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Tesch, DA, Eckhard D, Guarienti WC.  2016.  Pitch and Roll control of a Quadcopter using Cascade Iterative Feedback Tuning. 4th {IFAC} Symposium on Telematics Applications. :30–35., Porto Alegre: IFAC Abstract

Quadcopter is a type of Unmanned Aerial Vehicle which is lifted and propelled by four rotors. The vehicle has a complex non-linear dynamic which makes the tuning of the roll and pitch controllers difficult. Usually the control design is based on a mathematical model which is strongly related to physical components of vehicle: mass, moment of inertia and aerodynamic. When a tool is attached to the vehicle, a new model must be computed to redesign the controllers. In this article we will adjust the controllers of a real experimental quadcopter using the Cascade Iterative Feedback Tuning method. The method is data-driven, so it does not uses a model for the vehicle; all it uses is input-output data collect from the closed-loop system. The method minimizes the \{H2\} error between the desired response and the actual response of the vehicle angle using the Newton-Raphson algorithm. The method achieves the desired performance without the need of the vehicle model, with low cost and low complexity.

Tesch, D, Eckhard D, Bazanella AS.  2016.  Iterative feedback tuning for cascade systems, June. 2016 European Control Conference (ECC). :495–500., Aalborg Abstract

Iterative Feedback Tuning (IFT) is a data-driven method used to tune parameters of feedback controllers minimising an H2 criterion. The method uses data from experiments to estimate the gradient of the criterion, and uses iterative quasinewton algorithms to adjust the controllers. When the method is used in cascade systems, usually the inner loop is firstly adjusted, and after the outer loop. In this article we describe an extension to the IFT method that adjusts both inner and outer loop at the same time using only data from closed-loop experiments at each iteration.