Pitch and Roll control of a Quadcopter using Cascade Iterative Feedback Tuning

Citation:
Tesch, DA, Eckhard D, Guarienti WC.  2016.  Pitch and Roll control of a Quadcopter using Cascade Iterative Feedback Tuning. 4th {IFAC} Symposium on Telematics Applications. :30–35., Porto Alegre: IFAC

Abstract:

Quadcopter is a type of Unmanned Aerial Vehicle which is lifted and propelled by four rotors. The vehicle has a complex non-linear dynamic which makes the tuning of the roll and pitch controllers difficult. Usually the control design is based on a mathematical model which is strongly related to physical components of vehicle: mass, moment of inertia and aerodynamic. When a tool is attached to the vehicle, a new model must be computed to redesign the controllers. In this article we will adjust the controllers of a real experimental quadcopter using the Cascade Iterative Feedback Tuning method. The method is data-driven, so it does not uses a model for the vehicle; all it uses is input-output data collect from the closed-loop system. The method minimizes the \{H2\} error between the desired response and the actual response of the vehicle angle using the Newton-Raphson algorithm. The method achieves the desired performance without the need of the vehicle model, with low cost and low complexity.

Notes:

n/a