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CHAPTER 1

Manifolds as gluing of models

1. Topological manifolds

Let M be a set. A chart on M is an injective map α : U → Rm from a subset U ⊂ M
onto an open subset of Rm. An atlas A is a collection of charts (Ui, αi) for which Ui cover M :
M = ∪Ui. An atlas A is topological if αi(Ui ∩ Uj) ⊂ αi(Ui) are open, and the transition
maps

αji := αjα
−1
i : αi(Ui ∩ Uj) −→ αj(Ui ∩ Uj)(1)

are homeomorphisms. Two topological atlases A and A′ are compatible if their union is again
a topological atlas.

Exercise 1. Show that compatibility is an equivalence relation ∼ among all topological
atlases of M , and that every equivalence class is represented by a unique maximal topological
atlas A — that is, with the property that A′ ∼ A implies A′ ⊂ A.

A topological manifold (M,A) is a set M , endowed with a maximal topological atlas
A. It has a canonical topology — namely, the smallest topology in which the domains Ui of
charts in the maximal topological atlas are all open. A map f : (M,AM) → (N,AN) between
topological manifolds is continuous if it is continuous for the induced topologies.

Remark 1. A classical theorem from Algebraic Topology asserts that:

Theorem (Invariance of Dimension). If U ⊂ Rm and V ⊂ Rn are nonempty open subsets,
there is no homeomorphism f : U → V unless m = n;

as a consequence, the dimension m of (each connected component of) a topological manifold
(M,A) is well-defined.

Exercise 2. A map f : (M,AM) → (N,AN) between topological manifolds is continuous
iff for topological atlases V = {(Vj, βj)} of N and U = {(Ui, αi)} ≺ f−1V of M the local
representations of f , that is, the maps between open sets of Euclidean spaces

M
f // N

Ui

αi

OO

β−1
λ(i)

fαi

// Vλ(i)

βλ(i)

OO

are continuous.

Exercise 3. A topological space is a topological manifold iff it is modeled on some Rm —
that is, if every point has an open neighborhood homomorphic to an open set of Rm. An open
subset of a topological manifold is itself a topological manifold, of the same dimension. If M
and N denote the following subspaces of R2,

M = {(x, y) | y = |x|}, N = {(x, y) | xy = 0},

then M is a topological manifold while N is not.
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6 1. MANIFOLDS AS GLUING OF MODELS

Exercise 4 (Gluing of topological manifolds). The result of gluing topological manifolds
(Mi)i∈I by homeomorphisms αji : Mij → Mji satisfying the cocycle conditions is again a topo-
logical manifold. Give examples in which each Mi is either Hausdorff or second-countable, but
the ensuing M is not.

Let U = (Ui)i∈I be an open cover, and let MU =
∐
i Ui. If Ui is nonempty for uncountably many i ∈ I, MU is not

second-countable. The line with doubled origin — that is, the manifold M which arises from the gluing data

M = 0 = R = M1, M01 = M10 = R�{0}, α01 = α10 = id.

as in Exercise 4 is not Hausdorff.

Remark 2. We shall henceforth assume that manifolds are also:
Hausdorffa) second countable;b) locally compact.c)

So in particular, all manifolds will be henceforth paracompact as topological spaces. For example,
we exclude from consideration “manifolds” as the line with doubled origin.

Although not strictly necessary for many purposes, these conditions will ensure many fea-
tures with which we are not willing to part ways just yet — for example, that vector fields have
local flows, admit partitions of unity etc.

2. Differentiable manifolds

A differential atlas A = {(Ui, αi)} a topological manifoldM is a topological atlas for which
all transition maps

αji := αjα
−1
i : αi(Ui ∩ Uj) −→ αj(Ui ∩ Uj)(2)

are diffeomorphisms — that is, differentiable homeomorphisms with differentiable inverses. Two
such differential atlases A and A′ are compatible if A ∪ A′ is again a differential atlas.

Exercise 5. Compatibility is an equivalence relation ∼ among all differential atlases of M ,
and every equivalence class is represented by a unique maximal differential atlas A.

A differential structure on a topological manifold M is a choice of maximal differential
atlas for it. A smooth manifold is a topological manifold M equipped with a differential
structure.

Exercise 6. Check that the following differential atlases on R:
A0 = (R, t 7→ t), A1 = (R, t 7→ t3).

lead to different differential structures on R.

A continuous map f : (M,AM)→ (N,AN) is smooth if its local representations

fβλ(i)αi := β−1
λ(i)fαi : Ui −→ Vλ(i)

are differentiable maps between open subsets of Euclidean space. A diffeomorphism is an
invertible smooth map, whose inverse is also smooth. More generally, it is a Cr-map if its local
representatives are r times continuously differentiable, and we set

Cr(M,N) = {f ∈ C0(M,N) | f is a Cr map}, 0 6 r 6∞.

Exercise 7. If Ai are the differential structures of Exercise 6, then the map

f : R −→ R, f(t) = t3

a) is a smooth homeomorphism f : (R,A0)→ (R,A0) which is not a diffeomorphism;
b) is a diffeomorphism f : (R,A0)→ (R,A1).

Exercise 8. Find a differential atlas of the m-sphere Sm = {x ∈ Rm+1 | ||x|| = 1} with
two charts.

Consider the stereographic projections

α± : Sm�{±em+1} ∼−→ Rm, α±(x1, ..., xm+1) = ( x1
1∓xm+1

, ..., xm
1∓xm+1

).



2. DIFFERENTIABLE MANIFOLDS 7

Then
α−1
+ (y1, ..., yn) = ( 2y1

|y|2+1
, ..., 2ym

|y|2+1
)

and so
α−α

−1
+ : Rm�{0} −→ Rm�{0}, α−α

−1
+ (y1, ..., ym) = ( y1

|y|2 , ...,
ym
|y|2 ).

Exercise 9. The set RPm of all (real) lines in Rm+1 is a smooth manifold of dimension
m. More generally, if V is a vector space of dimension m, the set

Grd(V ) = {W ⊂ V | W subspace of dimension d}
is a smooth manifold of dimension d(m− d).

Equip V with a metric 〈·, ·〉, and let W ∈ Grd(V ). Then V = W ⊕W⊥. Let U = {Z ∈ Grd(V ) | Z ∩W⊥ = 0}. Then each

Z ∈ U is of the form Z = {w + α(Z)w | w ∈ W} for a unique α(Z) ∈ Hom(W,W⊥); explicitly, α(Z)prW (z) = prW⊥ (z). This

defines a chart α : U → Hom(W,W⊥) (note that α is onto).

Exercise 10 (Gluing of smooth manifolds). If the result M of gluing smooth manifolds
(Mi)i∈I by diffeomorphisms αji : Mij →Mji satisfying the cocycle conditions is again Hausdorff
and second-countable, then M has the structure of smooth manifold.

Exercise 11. A set S ⊂ M has measure zero if for all charts (V, φ) of M , φ−1S ⊂ Rm
has measure zero.

A set of functions P ⊂ C∞(M) is locally finite if every x ∈M has an open neighborhood
U which meets supp(%) for finitely many % ∈ P . In that case,

fP(x) :=
∑
%∈P

%

is a well-defined smooth function, and we call a locally finite set of nonnegative functions P
a partition of unity if fP is identically one. A partition of unity P is subordinated to an
open cover U if the support supp(%) of an % ∈ P lies in some U ∈ U .

Exercise 12. If an open cover U = (Ui)i∈I is refined by a cover V = (Vj)j∈J to which a
partition of unity is subordinated has itself a partition of unity subordinated to it.

Let λ : J → I be the refinement map, and (%′j) the partition of unity subordinated to V . Because every x ∈ X has an open
neighborhood on which only finitely many %′j ’s do not vanish identically, the sum

%i =

{
0 i 6∈ λJ ;∑
j∈(λ)−1(i) %

′
j i ∈ λJ.

defined a smooth function, whose support lies in Ui, and (%i)i∈I is a partition of unity subordinated to U .

Exercise 13. If U ⊂ M is an open set around x ∈ M , there is an open neighborhood
x ∈ V ⊂ U and a smooth function f : M → [0, 1], which is identically one on V and whose
support lies in U .

The function a : R −→ R, a(x) =

e−
1
x2 , x > 0;

0, x 6 0
is smooth, and b(x) := a(x)a(1 − x) is positive for 0 < x < 1 and zero

elsewhere. The function c(x) :=
∫ x
0 b(y)dy∫ 1
0 b(y)dy

is smooth, and

h(x) = 0, x 6 0, 0 < h(x) < 1, 0 < x < 1, h(x) = 1, 1 6 x.

Using this, one constructs for x ∈ Rm and 0 < δ < ε a smooth function g : Rm → [0, 1] satisfying

g|Bδ(x) = 1, g|Rm�Bε(x) = 0.

Now use a chart α : U → Rm containing Bε(x) to construct the smooth function

f : M −→ R, f(x) =

{
gα(x) if x ∈ U ;

0 if x 6∈ U.

Exercise 14. Every open cover U of a smooth manifold has a partition of unity subordi-
nated to it.

First, one can refine U by a locally finite, precompact open cover. For each U ∈ U and each x ∈ U , there is fUx : M → [0, 1]
such that fUx (x) = 1 and supp(fUx ) ⊂ U . Let V Ux = {y ∈ U | fUx (y) > 0}. The collection V ′ of such open sets V Ux is an open
cover of M which refines U . Because M is paracompact, V ′ has a locally finite refinement V . For each V ∈ V , there is a smooth
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function fV : M → [0, 1] and U ∈ U , such that fV |V > 0 and supp(fV ) ⊂ U . Because U is precompact and V is locally finite,
each U ∈ U meets finitely many V ∈ V ; that is,

V U := {V ∈ V | U ∩ V 6= ∅}

is a finite set for each U . Therefore the family of functions (fU )U∈U

fU : M −→ [0,∞), fU (x) :=
∑

V ∈V U

fV (x)

is smooth, subordinated to U (hence locally finite), and

f : M −→ [0,∞), f :=
∑
U∈U

fU > 0.

Hence P ⊂ C∞(M), P := { f
U

f
| U ∈ U } is a partition of unity subordinated to U .

Exercise 15. In a smooth manifold M , every two disjoint closed sets C0, C1 ⊂ M can be
separated by a smooth function — that is, there exists f ∈ C∞(M), such that f |C0 = 0 and
f |C1 = 1.

Let U0 = M�C1, U1 = M�C0, and consider the open cover U = {U0, U1}. Let {%0, %1} be an open cover subordinated to

U , and set f = %0.

3. Tangent functor and maps of locally constant rank

A smooth curve c in a smooth manifold M is a smooth map c : [0, 1] → M . We say that
it starts at c(0) and ends at c(1). Among all smooth curves in M which start at x, we may
consider the equivalence relation in which c0 ∼ c1 iff αc0 and αc1 have the same velocity at
t = 0 for any chart (U, α) around x. The set of equivalence classes v = d

dt
c(t)|t=0 under this

relation defines the tangent space TxM to M at x.

Exercise 16. The disjoint union TM =
∐

x TxM of all tangent spaces to a smooth manifold
of dimension m has a natural structure of smooth manifold of dimension 2m, equipped with a
smooth map pr : TM →M , assigning x ∈M to v ∈ TxM , is smooth.

If A = {(Ui, αi)} is a differential atlas for M , define a differential atlas TA = {(TUi, γi)} by

γi : TUi −→ αiUi × Rm, γi(
d
dt
c(t)|t=0) = (αic(0), d

dt
αic(t)|t=0).

Then

γji := γjγ
−1
i : γiT (Ui ∩ Uj) −→ γjT (Ui ∩ Uj), γji(x, v) = (αji(x), Dαji(x, v))

Exercise 17 (Tangent functor). Every smooth map f : M → N induces a smooth map
f∗ : TM → TN which restricts on tangent spaces to linear maps f∗ : TxM → Tf(x)N , in such
a way that if id∗ = id and (gf)∗ = g∗f∗ for a further smooth map g : N → P .

Exercise 18 (Jet manifolds). Let r > 0 and x ∈ M . Consider the equivalence relation
on the set C∞(M,N) of smooth maps from M to N in which two maps f, f ′ are equivalent,
f ∼rx f ′, iff they have local representatives around x with the same Taylor series of order r at
x. Let Jr(M,N)x denote the set of equivalence classes, and denote by jrf(x) the equivalence
class of f . Then

Jr(M,N)x =
⋃
x∈M

Jr(M,N)x

has a canonical structure of smooth manifold, in which:
• A smooth map f : M → N gives rise to a smooth map jrf : M → Jr(M,N);
• The map pr : Jr(M,N)→M , jrf(x) 7→ x is smooth;
• The maps Jr(M,N)→ Jr−1(M,N) are smooth, and J0(M,N) = M ×N .

The rank of a smooth map f : M → N at x ∈M is the rank of its differential f∗ : TxM →
Tf(x)N . The function x 7→ rkxf is lower-semicontinuous, in the sense that every x ∈M has an
open neighborhood in which the rank of f is bound below by rkxf . The map f has locally
constant rank if every point lies in an open set in which the rank is constant.
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Exercise 19. A smooth map has locally constant rank iff it is locally linear — that is,
around every point it has local representatives which are linear maps.

It suffices to show that a smooth map f : Rm → Rn, which maps zero to zero and has rank r around zero is equivalent to the
linear map

Rm = Rr × Rm−r −→ Rn = Rr × Rn−r, (x, y) 7→ (x, 0).

Up to a reordering of coordinates, we may assume that ( ∂fi
∂xj

)16i,j6r is non-singular around zero. Hence

α : Rm −→ Rm, α(x1, ..., xm) = (f1(x), ..., fr(x), xr+1, ..., xm).

is a diffeomorphism around the origin, by the IFT. Hence

fα−1 : Rm −→ Rn, (fα−1)(x1, ..., xm) = (x1, ..., xr, gr+1(x), ..., gn(x)), gi := fiα
−1.

Because

(fα−1)∗ =

(
Ir 0

∗ ∂gi
∂xj

)

and the rank of (fα−1)∗ is exactly r, it follows that ∂gi∂xj
= 0 — that is, the functions gi do not depend on the variables xr+1, ..., xm:

gi(x) = gi(x1, ..., xr) if i > r. Define now

β(y1, ..., yn) = (y1, ..., yr, yr+1 − gr+1(y1, ..., yr), ..., yn − gn(y1, ..., yr))

Then β is a diffeomorphism around zero, and

βfα−1(x1, ..., xm) = (x1, ..., xr, 0, ...0).

The map f : M → N is an immersion if f∗ is injective at all points, and a submersion
if it is surjective at all points. By Exercise 19, for every x ∈ M , there are local charts (U, α)
around x ∈M and (V, β) around f(x) ∈ N , such that respectively

βfα−1(x1, ..., xm) = (x1, ..., xm, 0, ..., 0), βfα−1(x1, ..., xm) = (x1, ..., xn).

The image of an injective immersion is called an immersed submanifold. An injective
immersion f : M → N is called an embedding if the topology on M is that induced by f .

Exercise 20. The map

f : (−π, π) −→ R2, f(t) = (sin(2t), sin(t)).

is a smooth immersion which is not an embedding.
The image is the image of [−π, π] and looks like an eight figure, and is compact, so it cannot be homeomorphic to (−π, π).

Exercise 21. A proper, injective immersion is an embedding.
By Exercise 78, such a map is a continuous, closed bijection onto its image, and hence a homeomorphism.

Exercise 22. Let f : M → N be an injective immersion, and g : P → N a smooth map.
Then there is a unique set-theoretic map g̃ : P →M lifting g, fg̃ = g, and a sufficient condition
for g̃ to be smooth is that it be continuous.

It suffices to show that g̃ is smooth around an arbitrary point p ∈ P . Because f : M → N is an immersion, it follows from

its local normal form that there are open neighborhoods V ⊂ N of fg̃(p), and U ⊂M of g̃(p), and a smooth map h : V → U , such

that h ◦ f |U = id. Because g̃ is continuous, W := g̃−1U ⊂ P is open, and g̃|W = h ◦ g|W . Hence g̃ is smooth.

An injective immersion f : M → N is initial if the lift g̃ : P → M is smooth for every
smooth g : P → N . A subset X ⊂ N is called initial submanifold if it is the image of an
initial immersion, and a submanifold if it is the image of an embedding.

Exercise 23. If f : M → N is any smooth map, and gr(f) : M → M × N is its graph
gr(f)(x) = (x, fx), then gr(f)M ⊂M ×N is a submanifold.

Exercise 24. Submanifolds are initial submanifolds, but not conversely.
Let i : X →M be an embedding, and let f : N →M be a smooth map, such that fN ⊂ iX. Let U ⊂ X be open. Because i is

an embedding, iU ⊂ iX ∩ V for some open set V ⊂M . Hence if f̃ : N → X is the unique set-theoretic lift, then f̃−1U = f−1(V )

is open, because f is continuous. Hence f̃ is continuous – hence smooth by Exercise 22.
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Exercise 25. For a parameter a ∈ R, consider
fa : R −→ T2, f(t) = (e2πit, e2πiat).

The image of fa is initial submanifolds. They are dense if a 6∈ Q, and are embedded iff a ∈ Q.
If a = q

p
, then faR = fa[0, p], so if r : R → S1 is the map r(t) = e

2πit
p , then fa = f̃ar, where f̃a : S1 → T2 is an injective

immersion — and hence an embedding since the circle is compact.
If a 6∈ Q, consider the submersion r : R2 → T2, r(x, y) = (e2πix, e2πiy). Then r is étale, and faR is the image under r of a

leaf of the linear foliation dy − adx. Let g : N → T2 be a smooth map whose image lies in faR. Let g(x0) = fa(t0), and consider
a chart α : T2 ⊃ U → αU ⊂ R2 with rα = id. It suffices to show that g̃ is smooth around x0, and note that

g̃|g−1U = pr1αg|g−1U .

Hence fa is initial. We show that it is not embedded by proving that faR = T2. Let (e2πir, e2πis). ∈ T2. We claim that e2πis lies

in the closure of the set Λ = {e2πicre2πicn ∈ | n ∈ Z} or, equivalently, that Λ0 = {e2πicn ∈ | n ∈ Z} is dense in the circle.

Suppose that were not the case, and let γ 6∈ Λ0. Then there is a maximal open interval Iγ = (γ− δ, γ+ ε) around γ which does not

meet Λ0. But note that Iγ+c = (γ + c− δ, γ + c+ ε). No two of these intervals overlap, since they were assumed to be maximal,

and no two can coincide since c is irrational. This leads to infinitely many disjoint open sets of the same positive length in the

circle, which cannot be. Hence faR is dnse in the torus, and in particular it is not embedded.

Exercise 26. If fi : Mi → N are injective immersions with the same image, and f−1
1 f0 :

M0 →M1 is continuous, then it is a diffeomorphism.
By Exercise 22, φ = f−1

1 f0 is smooth, hence a diffeomorphism.

Exercise 27. An initial submanifold has a unique structure of smooth manifold, for which
the inclusion map is an immersion.

Suppose X ⊂ N be the image of an initial immersion, and f : M → N is an injective immersion with image f(M) = X.

Then f : M → X is continuous; hence by Exercise 26, f : M → X is a diffeomorphism.

Exercise 28. For a subset X of a smooth manifold M , the following conditions are equiv-
alent:
i) X is a submanifold of codimension q;
ii) around every x ∈ X, there is a smooth chart (V, β) of M , such that

β(X ∩ V ) = (Rm−q × 0)× βV ;

iii) around every x ∈ X, there is a submersion s : U → Rq, such that X ∩ U = s−1(0).
i) ⇔ ii) Assume that the inclusion i : X → M is an embedding. Let (U,α) and (V ′, β) be charts around x ∈ X and i(x) ∈ M ,
such that βiα−1 : U → V ′ coincides with the restriction of the inclusion of Rn as Rn × 0 ⊂ Rm. Because i is an embedding,
iU = V ∩ iX for some open V ⊂ V ′. Then the chart (V, β) satisfies ii). Conversely, condition ii) implies that X has an induced
smooth structure (by considering only charts as in ii), and extracting (W ∩Rm−q × 0, ψ) from them), for which the inclusion map
i : X →M is an embedding.

ii) ⇔ iii) Assuming ii), we construct a such submersion by s := pr2 ◦ψ−1 : U → Rq. For the converse, use the local normal form

of submersions to find a chart (W,ψ) of M around x ∈ X ∩ U , such that ψ−1(X) = W × (Rm−q × 0).

Exercise 29. Every compact manifold embeds into some RN .
Define for a finite differential atlas {(U1, α1), ..., (Uk, αk)}, and %1, ..., %k a partition of unity subordinated to {Ui},

f : M −→ Rk(m+1), f(x) = (f0(x), ..., fk(x)), f0(x) = (%1, ..., %k), fi(x) =

{
0, x 6∈ Ui,
%i(x)αi(x), x ∈ Ui.

Then: a) f is injective: if f(x) = f(y), then %i(x) = %i(y) > 0 and fi(x) = fi(y) for some i, and hence αi(x) =
fi(x)
%i(x)

=
fi(y)
%i(y)

=

αi(y). So x = y. Also: b) f is an immersion: if f∗(x)v = 0, then Lv%i(x) = 0 and Lvfi(x) = 0. If %i(x) > 0, then

Lvfi(x) = %i(x)Lvαi(x) + Lv%i(x)αi(x)

implies Lvαi(x) = 0; but αi is a diffeomorphism, so v = 0. The rest follows from M being compact.

4. Differential forms

A covector ξ at x ∈ M is a linear function ξ : TxM → R — that is, an element of
T ∗xM := (TxM)∗. The cotangent bundle of M is the disjoint union

T ∗M =
∐
x∈M

T ∗xM.
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Exercise 30. The cotangent bundle of a smooth manifold of dimension m has a natural
structure of smooth manifold of dimension 2m, equipped with a smooth map pr : T ∗M → M ,
assigning x ∈M to ξ ∈ T ∗xM , which turns T ∗M into a vector bundle over M .

A one-form is a smooth map ξ : M → T ∗M for which prdf = id. The space of all
one-forms on M is denoted by Ω1(M).

Exercise 31. For a smooth, real-valued function f ∈ C∞(M), determines a one-form
df ∈ Ω1(M) by

〈df, v〉 = Lvf, v ∈ X(M).

Exercise 32. Every ξ ∈ T ∗xM is of the form ξ = df(x) for some f ∈ C∞(M).

A p-form, is a section of ∧pT ∗M →M . The space of p-forms is denoted Ωp(M). The space
of differential forms is Ω(M) = ⊕pΩp(M).

Exercise 33 (Wedge product). Ω(M) is a commutative graded algebra under the product

(ω ∧ η)(v1, ..., vp+q) =
∑
σ∈Sp,q

(−1)σω(vσ(1), ..., vσ(p))η(vσ(p+1), ..., vσ(p+q))

where Sp,q denotes the set of all (p, q)-shuffles — that is, permutations in p+q letters, satisfying

σ(1) < · · · < σ(p), σ(p+ 1) < · · · < σ(p+ q).

Exercise 34 (Pullback by a smooth map). If φ : M → N is a smooth map, and ω ∈ Ωp(N)
is a differential p-form, then

φ∗(ω)x = φ∗(ωφx)

defines a p-form φ∗(ω) ∈ Ωp(M), and the pullback map

φ∗ : (Ω(N),∧) −→ (Ω(M),∧)

is a homomorphism of graded commutative algebras.

Exercise 35. The linear map ι : X(M) −→ End−1Ω(M) which to a vector field v ∈ X(M)
assigns the degree −1 endomorphism

(ιvω)(v1, ..., vp−1) = ω(v, v1, ..., vp−1), vi ∈ X(M), ω ∈ Ωp(M) :

a) is a graded derivation of (Ω,∧);
b) squares to zero: ιv(ιvω) = 0 for all differential form ω.

5. Vector fields and their local flows

A vector field v on a smooth manifold M is an assignment of a vector vx ∈ TxM for each
x, varying smoothly in x — that is, a smooth map v : M → TM such that prv = id. The space
of all vector fields on M will be denoted by X(M).

A trajectory of a vector field v ∈ X(M) is a smooth curve c : (a, b)→M such that
d
dt
c = v ◦ c.

By the fundamental theorem of ODEs, there is a smooth map
φ : R×M ⊃ dom(v) −→M, φ(t, x) = φt(x),

where dom(v) is an open neighborhood of {0} ×M , such that φt(x) is the maximal trajectory
of v with φ0(x) = x. We call φt the local flow of v, and note that φtφs(x) = φt+s(x) whenever
either side is defined. A vector field v is complete if dom(v) = R×M .

Exercise 36. A vector field whose support is compact is complete.
If supp(v) ⊂ M a compact set, there is ε > 0 such that (−ε, ε) × M ⊂ dom(v). Then if t ∈ R, let n ∈ N be such that

t
n
∈ (−ε, ε). Then

φt(x) = φ t
n
φ t
n
· · ·φ t

n︸ ︷︷ ︸
n

(x)
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Exercise 37. A derivation δ of the space C∞(M) of smooth, real-valued function f :
M → R is a linear map δ : C∞(M) → C∞(M) such that δ(fg) = δ(f)g + fδ(g). Denote by
DerC∞(M) the space of such derivations. Then vector field v ∈ X(M) defines a derivation
Lv ∈ DerC∞(M) of Lie derivative by v,

(Lvf)(x) := d
dt

(fc)|t=0, vx = [c],

and L : X(M) −→ DerC∞(M) is a linear isomorphism.
In local coordinates (x1, ..., xm), a vector field v has an expression v =

∑
vi

∂
∂xi

, where vi are smooth functions. It acts of a

function f via Lvf =
∑
vi

∂f
∂xi

. That Lv is a derivation follows from the product rule. If D is a derivation, set vi = Dxi. Write
an arbitrary function f as

f(x) = f(0) +

m∑
i=1

xifi(x), fi(x) =

∫ 1

0

∂f
∂xi

(tx)dt

to deduce that Df(0) =
∑m
i=1 vifi(x) = Lvf . Hence D = Lv for v =

∑
vi

∂
∂xi

, and this defines v uniquely.

Exercise 38 (Lie bracket of vector fields). For vector fields v, w ∈ X(M), L[v,w] :=
[Lv,Lw]c defines a unique vector field [v, w] ∈ X(M), and the assignment

[·, ·] : X(M)× X(M) −→ X(M), (v, w) 7→ [v, w]

turns X(M) into a Lie algebra.
Follows from the fact that graded endomorphisms of the graded vector space Ω(M) form a graded Lie algebra.

Exercise 39 (Related vector fields). We say that vector fields vM ∈ X(M) and vN ∈ X(N)
are f-related by a smooth map f : M → N if vN(f(x)) = f∗(vM(x)) for all x ∈ M . If
vM ∼f vN and wM ∼f wN , then [vM , wM ] ∼f [vN , wN ]. If φt and ψt denote their respective
flows, then

f ◦ φt = ψt ◦ f
whenever either side is defined.

Exercise 40 (Push-forward of a vector field by a diffeomorphism). If f : M → N is a
diffeomorphism, and v ∈ X(M) is a vector field, then

f∗(v) ∈ X(N), f∗(v)(x) = f−1
∗ v(fx)

is a vector field on N , f -related to v. If φt is the local flow of v, then ψt = f ◦ φt ◦ f−1 is the
local flow of f∗(v).

We say that a section v ∈ Γ(I × TM) is a time-dependent vector field, and a curve c is
a trajectory if d

dt
c = vt ◦ c(t).

Exercise 41 (Time-dependent of vector fields). Let v be a time-dependent vector field on
M , and let the (usual) vector field ṽ = ∂

∂t
+ v ∈ X(I ×M) have local flow Φt. Then the map

φt,s defined by
Φt(s, x) = (t+ s, φt+s,s(x)),

satisfies
d
dt
φt,s(x) = vt ◦ φt,s(x), φt,sφs,r(x) = φt,r(x), φt,t(x) = x.

and is called the local flow of v. If v ∈ X(M) has local flow φt and is regarded as depending
(trivially) on time, then φt,s = φtφ

−1
s .

Exercise 42. If φt denotes the local flow of v ∈ X(M), then for all f ∈ C∞(M) and
w ∈ X(M) we have

d
dt

(φt)
∗f = (φt)

∗(Lvf), d
dt

(φt)
∗w = (φt)

∗([v, w]).

If more generally v is a time-dependent vector field, then for all f ∈ C∞(I × M) and w ∈
Γ(I × TM), we have that

d
dt

(φt,s)
∗ft = (φt,s)

∗(Lvtft + d
dt
ft),

d
dt

(φt,s)
∗wt = (φt,s)

∗([vt, wt] + d
dt
wt).

The formula for time-dependent objects comes from the time-independent one via the correspondence

Γ(I × TM) −→ X(I ×M), v 7→ ∂
∂t

+ v.
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For functions, this is checked directly:

d
dt

(φt,s)∗f = f∗
d
dt

(φt,s) = f∗vφ
t,s = Lvφ

t,s = (φt,s)∗(Lv).

For vector fields, differentiate both sides of L(φt,s)∗w(φt,s)∗f = (φt,s)∗(Lwf) to get

L d
dt

(φt,s)∗w
(φt,s)∗f + (φt,s)∗(LwLvf) = (φt,s)∗(LvLwf),

which is to say that

L d
dt

(φt,s)∗w
(φt,s)∗f = (φt,s)∗(L[v,w]f) = L(φt,s)∗[v,w](φ

t,s)∗(f),

and therefore d
dt

(φt,s)∗w = (φt,s)∗[v, w].

6. Cartan calculus

Exercise 43. The degree 1 linear map d : Ω(M)→ Ω(M) defined by

dω(v0, v1, ..., vp) =
∑

(−1)iLviω(v0, ..., v̂i..., vp) +
∑
i<j

(−1)i+jω([vi, vj], v0, ..., v̂i, ..., v̂j..., vp)

for ω ∈ Ωp(M) and vi ∈ X(M):
a) is a graded derivation of (Ω,∧);
b) extends df of Exercise 31 for functions f ∈ C∞(M) = Ω0(M);
c) commutes with pullbacks: if φ : N → M is a smooth map, and ω a differential form on M ,

then dφ∗(ω) = φ∗(dω);
d) squares to zero: d(dω) = 0 for all differential form ω.

Exercise 44. The linear map L : X(M) −→ End0Ω(M) which to a vector field v ∈ X(M)
assigns the degree zero endomorphism

Lv := [ιv, d]c

(see Exercise 82) is a graded derivation of (Ω,∧).

Exercise 45 (Cartan calculus). For vector fields v, w ∈ X(M):
a) [ιv, ιw]c = 0;
b) [ιv, d]c = Lv;
c) [d, d]c = 0;
d) [Lv, d]c = 0;
e) [Lv, ιw]c = ι[v,w];
f) [Lv,Lw]c = L[v,w].

7. Integration

A volume element ρ on a vector space V of dimension m is a function

ρ : V × · · · × V −→ R, such that ρ(Av1, ..., Avm) = | detA|ρ(v1, ..., vm)

for all v1, ..., vm ∈ V and linear map A : V → V . Note that volume elements on V form a
vector space D(V ) of dimension one.

Exercise 46. If M is a smooth manifold of dimension m, the set D(M) =
∐

x∈M D(TxM)
has a canonical structure of smooth manifold of dimension m+ 1, for which the canonical map
pr : D(M)→M is a surjective submersion.

Let (U,α) be a chart of M , and let ρ ∈ D(TxM). Then ρ = sα∗|dx| for a unique s ∈ R. Define

α̃ : D(U) −→ αU × R, α̃(ρ) := (α(x), s).

Then

β̃α̃−1 : α(U ∩ V )× R −→ β(U ∩ V ), β̃α̃−1(x, s) = (βα−1(x), s
| detD(βα−1)(α(x))| ).

The charts (D(U), α̃) turn D(M) into a smooth manifold, and the map pr : D(M) → M is locally represented by the canonical
projections αU × R→ αU .
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A density ρ on a smooth manifold M is a smooth map ρ : M → D(M) such that prρ = id,
and we write Dens(M) for the vector space of all densities on M , and Densc(M) for the vector
subspace of densities of compact support, where

supp(ρ) := {x ∈M | ρx 6= 0}.
Note that they are modules over C∞(M) of dimension one.

Exercise 47. A density ρ on M can be equivalently defined as a rule which to every chart
(U, α) of M , assigns a smooth function ρα ∈ C∞(αU), in such a way that, for a second chart
(V, β),

ρα = ρβ ◦ (βα−1)| detD(βα−1)|.(3)
Note that if (U,α) is a chart of M , then ρ|U = α∗(ρα|dx|) for a unique ρα ∈ C∞(αU), hence for a second chart (V, β), we

have that
ρα|dx| = (βα−1)∗(ρβ |dx|) = (βα−1)∗(ρβ)(βα−1)∗(|dx|) = (βα−1)∗(ρβ)| detD(βα−1)|(|dx|)

which is to say that the smooth functions ρα satisfy the required transition rule.

Exercise 48. There is a unique linear map
∫
M

: Densc(M) → R with the property that,
for a density ρ whose support lies in a chart (U, α), we have∫

M

ρ =

∫
αU

ρα

Fix a partition of unity %i subordinated to a locally finite atlas A = (Ui, αi), and let ρ be a density on M of compact support.
Then %iρ is a density supported in Ui, and we set ∫

M
ρ :=

∑
i

∫
αiUi

(%iρ)αi .

Because of the hypotheses, this sum is finite. Clearly
∫
M thus defined is a linear map, which does not depend on the choices made:

if %′j , Vj , βj) were another set of choices, then∑
j

∫
βj(Vj)

(%′jρ)βj =
∑
i,j

∫
βj(Ui∩Vj)

(%i%
′
jρ)βj =

∑
i,j

∫
αi(Ui∩Vj)

(%i%
′
jρ)βj ◦ (βjα

−1
i )| detD(βjα

−1
i )| =

∑
i,j

∫
αi(Ui∩Vj)

(%i%
′
jρ)αi

=
∑
i

∫
αi(Ui)

(%iρ)αi

Exercise 49. If ρ ∈ Dens(N) and φ : M → N is a diffeomorphism, then

φ∗(ρ)x(v1, ..., vm) := ρφ(x)(φ∗v1, ..., φ∗vm)

defines a density φ∗(ρ) ∈ Dens(M). If ρ has compact support, so does φ∗(ρ), and
∫
M
φ∗(ρ) =∫

N
ρ.
If ρ = (ρβ)(V,β) is such a density, there is a unique density φ∗(ρ) on M for which φ∗(ρ)βφ = ρβ , in which case we see that∫

βφφ−1Vj

φ∗(ρ)βφ =

∫
βVj

ρβ ,

which implies the equality
∫
M φ∗(ρ) =

∫
N ρ for ρ of compact support.

A density ρ is called positive if ρα > 0 for all charts (U, α). We denote by D+(M) the
subspace of such densities.

Exercise 50. Positive densities exist.
For every nowhere-vanishing form ω ∈ Ωm(M), |µ|x(v1, ..., vm) := |µx(v1, ..., vm)| is a positive density. Hence if (Ui, αi) are

charts of M , %i is a partition of unity subordinated to it, and µi ∈ Ωm(αiUi) are nowhere-vanishing forms, then

ρ :=
∑
i

%iα
∗
i (|µi|)

is a positive density on M .

Exercise 51. There is a canonical bilinear map div : Densc(M) × X(M) → Densc(M),
uniquely determined by the property that, for all density ρ and vector field v,

d
dt

(φt,s)∗(ρ)|t=s = div(v, ρ)
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where φt,s denotes the local flow of v. First observe that the LHS of the formula above is a priori a density on M . Let
ρ = (ρα) and v = (vα). Observe that the local flow of vα if given by φt,sα := αφt,sα−1, and that (φt,s)∗(ρ)α = ρα ◦φt,sα |detDφt,sα |.
Because φt,tα = id, it follows that for s and t sufficiently close, (φt,s)∗(ρ)α = ρα ◦ φt,sα detDφt,sα . Hence

d
dt

(φt,s)∗(ρ)α|t=s = (ρα)∗(vα) + ραTrDvα = (ρα)∗(
m∑
1

(vα)i
∂
∂xi

) + ρα

m∑
1

∂(vα)i
∂xi

=

m∑
1

∂
∂xi

(ρα(vα)i),

and so div(v, ρ) is the density given by div(v, ρ)α =
∑m

1
∂
∂xi

(ρα(vα)i).

Exercise 52. A Riemannian metric g on M is a section g ∈ Γ(S2TM) with the property
that g(v, v) > 0 for all v, and g(v, v) = 0 iff v = 0. If g is a Riemannian metric, then
g ∈ Γ(S2(∧rTM)) given by

g(v1 ∧ · · · ∧ vr, w1 ∧ · · · ∧ wr) := det(g(vi, wj))

define metrics on ∧rTM . If M is oriented and ω ∈ Ωr(M), there is a unique ?ω ∈ Ωm−r(M)
such that

η ∧ ?ω = g(η, ω)µg,

where µg is the volume form of g and η ∈ Ωr(M), and ? : Ωr(M) → Ωm−r(M) comes from a
linear endomorphism of ∧T ∗M . Conclude that g induces a degree -1 endomorphism δg of Ω(M)
which squares to zero.

Exercise 53. Let g be a Riemannian metric on an oriented manifold with boundary M .
The map

DM : C∞(M)× C∞(M) −→ R, DM(f, g) :=

∫
M

df ∧ ?dg

is symmetric, and if ∆ denotes

∆ : C∞(M) −→ Ωm(M), ∆f := d ? df,

then ∫
∂M

(f ? dg − g ? df) =

∫
M

(f∆g − g∆f)

Exercise 54. Let g be a Riemannian metric on an oriented manifold with boundary M . A
function is harmonic if ∆f = 0. If M = Rm with its Euclidean metric, then

g(x) =

{
log r, m = 2,

rm−2, m > 2

is harmonic. If U ⊂ Rm is open, and f : U → R is harmonic, then for all spheres Sr(0)
contained in U ,

f(0) =
∫
Sr(0)

fdS∫
Sr(0)

fdS
,

where dS denotes the induced volume form. Conclude that if U is connected and f is harmonic
and attains its maximum on U , then f is constant.

8. Critical points and transversality

Let f : M → N be a smooth map. A point x ∈M is a regular point if f∗ : TxM → Tf(x)N
is onto, and critical point otherwise. A point y ∈ N is regular value if f−1(y) has no critical
points; otherwise, it is a critical value. Note that y 6∈ fM is automatically a regular value.
We denote by

Crit(f) = {x ∈M | rkxf < dimN}
the set of critical points, and by fCrit(f) ⊂ N the set of critical values.
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Exercise 55. IfM is compact of positive dimension, and ∂M = ∅, then there every smooth
function onM has at least two points. Give counterexamples if any of the hypotheses is omitted.

A continuous function f on a compact space M attains its maximum value C and minimum value c; if M is a smooth manifold

and f is a smooth function, the points where C and c are attained must be critical points. Counterexamples: f(t) = t where M is

either R or [0, 1].

Exercise 56 (Sard theorem). If f : M → N is a smooth map, fCrit(f) ⊂ N has measure
zero.

It suffices to prove the theorem for a smooth map f : Rm ⊃ U → Rn, and we do so by induction on m. Consider

Crit(f) ⊃ Crit1(f) ⊃ · · · ⊃ Critk(f) ⊃ · · · , Criti(f) = {x ∈ U | Dαf(x) = 0 for all |α| 6 i}.

Step 1. f(Crit(f)�Crit1(f)) has measure zero. If x ∈ Crit(f) does not lie in Crit1(f), then wlog ∂f1
∂x1

(x) 6= 0. Then ψ =

(f1, x2, ..., xm) : V → V ′ is a diffeomorphism around x ∈ V , and the smooth map g = fψ−1 : V → Rm is of the form
g(x1, x2, ..., xm) = (x1, g2(x), ..., gn(x)). Hence g(V ∩{x1}×Rm−1) ⊂ {x1}×Rn−1 for each x1, and we let gx1 : V ∩{x1}×Rm−1 →
Rn−1 denote the restriction. Note that

Crit(g) = ψ(Crit(f) ∩ V ), gCrit(g) = f(Crit(f) ∩ V ).

and that ∂g1
∂x1

= 1 implies also that

Crit(g) ∩ ({x1} × Rm−1) = Crit(gx1 ).

By the inductive hypothesis, g1Crit(gx1 ) has measure zero in {x1} × Rn−1, and so

gCrit(g) = ∪x1∈pr1V g1Crit(gx1 )

has measure zero.
Step 2. f(Critk+1(f)�Critk(f)) has measure zero. WLOG, ∂

k+1f1
∂x1∂xα

(x) 6= 0, so we consider the diffeomorphism ψ(x1, x2, ..., xm) =

( ∂
kf1
∂xα

(x)), x2, ..., xm) : V → V ′ as argue as in Step 1 to show that f(Critk+1(f) ∩ V ) has measure zero.
Step 3. f(Critk(f)) has measure zero for k sufficiently large.

Consider the cube �(1) ⊂ Rm of edges 1. We show that f(Critk(f) ∩ �(1)) has measure zero if k > m/n − 1. By Taylor’s
theorem, if x ∈ Critk(f), then for all y such that x+ [0, 1]y ∈ �(1) ∩ U , there is a constant C > 0, such that

|f(x+ y)− f(x)| 6 C|y|k+1.

Subdivide �(1) into rm subcubes of length 1
r
, and let �( 1

r
) be the subcube which contains x. Then x + y ∈ �( 1

r
) implies |y| 6

√
m
r

, and by the inequality above, f(�( 1
r

)) lies in a cube of Rn of edges C(
√
m
r

)k+1. Hence the volume of f(�( 1
r

)) is at most

Cn(
√
m
r

)n(k+1), and so the volume of f(Critk(f) ∩ �(1)) is at most

Cn(
√
m)n(k+1)rm−n(k+1)

If n(k + 1) > m, this quantity goes to zero as r grows.

Two smooth maps f : M → N and g : P → N are transverse if, for all (x, y) ∈M×(f,g)P =
(f, g)(∆N), we have

TzN = f∗TxM + g∗TyP, z = f(x) = g(y).

We write this as f >∩ g. If Y ⊂ N is a submanifold, we say that f is transverse to Y , and
write f >∩ Y to denote f >∩ iY .

Exercise 57. Two smooth maps f : M → N and g : P → N are transverse iff (f, g) :
M × P → N ×N is transverse to ∆N .

Exercise 58. If f : M → N is transverse to a submanifold Y ⊂ N , then X := f−1Y is a
submanifold of M of the same codimension in M as that of Y in N , and TX = f−1

∗ TY .
Let s : N ⊃ U → Rq be a local submersion with Y ∩ U = s−1(0). Then TyY = ker(s∗)y, and we claim that f transverse to Y

ensures that sf : f−1U → Rq is a submersion; indeed,

f∗(TxM) + Tf(x)s
−1(0) = f∗(TxM) + ker(s∗)f(x) = Tf(x)N

implies that

s∗f∗(TxM) = s∗Tf(x)N = Tsf(x)Rq .

Hence the collection {(sf)−1(0) = f−1(Y ∩ U)}, as (U, s) range over such local submersions, defines a submanifold X = f−1(Y ),

and TX = ker(sf)∗ = f−1
∗ ker(s)∗ = f−1

∗ TY .
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Exercise 59. If f : M → N and g : P → N are transverse smooth maps, then

M ×(f,g) P = {(x, y) ∈M × P | f(x) = g(y)}
is a submanifold of M × P of codimension dimN . In particular, if X,X ′ ⊂ M are transverse
submanifolds, then X ∩X ′ is again a submanifold, and

dimM + dim(X ∩X ′) = dimX + dimX ′, T (X ∩X ′) = TX ∩ TX ′.





CHAPTER 2

Appendix: Recollection

1. Topology

For a set X, we denote by P(X) the set of all subsets of X. A topology on X is a collection
T ⊂P(X) of subsets of X, with the following properties:
a) The union of members of T is again a member of T ;
b) The intersection of finitely many members of T is again a member of T ;
Note that the definition implies that ∅ and X are members of T , since ∅ is the union of an
empty family of subsets, and X is the intersection of an empty family of subsets.

A subset U ⊂ X is called open in the topology T if U ∈ T , and closed if its complement
is open. A neighborhood N ⊂ X of a subset Y ⊂ X is a subset which contains an open set
U ⊂ X which contains Y : Y ⊂ U ⊂ N . A map f : (X,TX) → (Y,TY ) between topological
spaces is continuous if TX ⊃ f−1(TY ). It is open if it maps open sets to open sets, and
closed if it maps closed sets to closed sets.

Exercise 60. Describe all topologies on X = {0, 1, 2, 3}.

Exercise 61. For any subset Y of a topological space (X,TX), there is a smallest closed set
Y ⊂ X containing Y , the closure of Y in X. Similarly, there is a largest open set int(Y ) ⊂ X
contained in Y , the interior of Y . A set is open iff Y = int(Y ), and it is closed iff Y = Y .

Exercise 62. Let X be a set, equipped with a closure operator, i.e. a map cl : P(X)→
P(X) with the following properties:
a) cl(∅) = ∅;
b) A ⊂ cl(A) for all A;
c) cl(A ∪B) = cl(A) ∪ cl(B) for all A,B;
d) cl(cl(A)) = cl(A).
Then topologies on X are in bijective correspondence with such closure operators.

Let cl be as in the statement. Note that A ⊂ B implies by the third axiom that cl(A) ⊂ cl(B) = cl(A) ∪ cl(B�A). Hence

clP(X) is closed under finite intersections. On the other hand, let (Ai)i∈I be any family of subsets. Then ∩icl(Ai) ⊂ cl(Aj) for

all j ∈ I; hence cl(∩icl(Ai)) ⊂ cl2(Aj) = cl(Aj) by the fourth axiom, and so cl(∩icl(Ai)) ⊂ ∩icl(Ai). But then the second axiom

imlies that ∩icl(Ai) = cl(∩icl(Ai)), and this together with the first axiom shows that T is closed under arbitrary unions.

Exercise 63. Let (X, d) be a metric space, and let T be the set of all subsets U ⊂ X with
the property that x ∈ U implies that U contains an open ball

Br(x) := {y ∈ X | d(x, y) < r}
of radius r around x, for some r > 0. Then T is a topology on X.

Let Top(X) denote the set of all topologies on the set X. It has an induced partial order:
we write T 6 T ′, and say that T is coarser than T ′, or that T ′ is finer than T , if T ⊂ T ′.
Note that T 6 T ′ exactly when id : (X,T ′)→ (X,T ) is continuous.

Exercise 64. For any subset Ω ⊂ Top(X) and topological space (Y,TY ):
a) The infimum inf Ω :=

⋂
T ∈Ω T ∈ Top(X) is the finest topology coarser than any topology

in Ω;
b) The supremum sup Ω := inf Ω′, where Ω′ := {T ′ ∈ Top(X) | T 6 T ′, T ∈ Ω}, is the

coarsest topology finer than any topology in Ω;
19
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c) For every subset S ⊂ P(X), there is coarsest topology T := 〈S 〉 which contains S (the
topology generated by S );

d) inf Top(X) is the indiscrete topology Tind := {∅, X}, and all maps g : (Y,TY ) →
(X,Tind) are continuous;

e) sup Top(X) is the discrete topology Tdisc := P(X), and all maps f : (X,Tdisc)→ (Y,TY )
are continuous;

f) For any collection of maps fi : X → Y from a set X, there is a coarsest topology TX on X
for which all maps fi are continuous (the initial topology);

g) For any collection of maps gi : Y → X into a set X, there is a finest topology TX on X for
which all maps fi are continuous (the final topology).

A homeomorphism is an invertible, continuous function whose inverse is also continuous.

Exercise 65. Find an example of a set X and topologies T0,T1 ∈ Top(X) for which
id : (X,T0)→ (X,T1) is a continuous, invertible map which is not a homeomorphism.

A topological space X is modeled on another topological space Y if, for all x ∈ X, there
is a homeomorphism φ : V → X of an open set V ⊂ Y onto an open neighborhood U = φ(V )
of x.

Exercise 66. Show that Rm is modeled on Rm+ = {x ∈ Rm | xm > 0}, but not conversely.

Exercise 67 (Quotient topology). Let (X,TX) be a topological space, and f : X → Y a
set-theoretic surjective map. Then

TY = {U ⊂ Y | f−1U ∈ TX}
defines a quotient topology on Y , which is such that:

(1) f : (X,TX)→ (Y,TY ) is continuous;
(2) for all topological spaces (Z,TZ) and set-theoretic maps g : Y → Z, g ◦ f : (X,TX)→

(Z,TZ) is continuous iff g : (Y,TY )→ (Z,TZ) is continuous.
In particular, every equivalence relation ∼ on a topological space induces a topology on the set
of equivalence classes.

Exercise 68. Let I be an index set. For each i ∈ I, let Xi be a topological manifold, and
for each i, j ∈ I let Xij ⊂ Xi be an open subset, and φji : Xij → Xji be a homeomorphism,
satisfying the cocycle conditions:

φii = id, φkjφji = φki.

Then the disjoint union
∐

i∈I Xi has an equivalence relation in which x ∈ Xij is identified
with φji(x), and the set of equivalence classes X has a canonical topology, in which each Xi is
identified with an open subset Ui ⊂ X, in such a way that Xij and Xji correspond to Ui ∩ Uj.

A topology T on X is Tychonoff (T1) if {x} is closed for each x ∈ X; equivalently, if for
any two distinct points x, x′ ∈ X, there is an open set which contains one but not the other.
A topology T on X is Hausdorff (T2) if any two distinct points x, x′ ∈ X have disjoint open
neighborhoods. It is regular (T3) if a closed set C ⊂ X and a point x 6∈ C have disjoint open
neighborhoods, and normal (T4) if any two disjoint closed sets C,C ′ ⊂ X have disjoint open
neighborhoods.

Exercise 69. Find examples of Ti-topological spaces which are not Ti+1.
T1 but not T2 X = R and T is the collection with the empty set and the complement of any finite set.
T2 but not T3 X = R2 and T be the topology with basis

B = {B |x1|
n

(x) | x1 6= 0, n ∈ N} ∪ {(B 1
n

(x)�{x1 = 0}) ∪ {x} | x1 = 0, n ∈ N}.

This is clearly T2. Both {0} and L = {x1 = 0, x2 6= 0} are closed, but cannot be separated by open sets.
T3 but not T4 Let X = R with the topology generated by sets of the form [a, b). Then X ×X is T3: IF C ⊂ X ×X is a closed
set and (x1, x2) ∈ (X ×X)�C, there are b1, b2 ∈ R such that the open set U := [x1, b1)× [x2, b2) lies in (X ×X)�C. But

(X ×X)�[x1, b1)× [x2, b2) = (((−∞, x1] ∪ [b1,∞))× R) ∪ (R× ((−∞, x2] ∪ [b2,∞)))
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is also open in this topology, so U, (X ×X)�U separate {x} and C. Now consider

C′ = {(t,−t) | t ∈ Q}, C′′ = {(t,−t) | t 6∈ Q}.

The topology induced on C = C′ ∪C′′ is discrete, so both C′ and C′′ are closed in C. Hence there are closed sets F, F ′′ in X ×X

such that C′ = F ′ ∩ C and C′′ = F ′′ ∩ C. But no two such F ′, F ′′ can be separated by open sets.

Exercise 70. If f : X → Z and g : Y → Z are continuous, and Z is Hausdorff, then

X ×(f,g) Y = {(x, y) | f(x) = g(y)}
is closed in X × Y .

The diagonal ∆Z ⊂ Z × Z is closed if Z is Hausdorff.

Exercise 71 (Urysohn’s lemma). A topological space is normal iff any two disjoint closed
sets A,B ⊂ X can be separated by a continuous function: there is f : X → [0, 1] continuous,
such that f |A = 0 and f |B = 1.

A space is normal iff for all C closed and U open, C ⊂ U implies that there is an open V , such that C ⊂ V ⊂ V ⊂ U . Let
C0 = A and U1 = X�B. Then C0 ⊂ U1; hence there is an open U 1

2

⊂ X and a closed subset C 1
2

⊂ X such that

C0 ⊂ U 1
2

⊂ C 1
2

⊂ U1.

Similarly, one constructs
C0 ⊂ U 1

4

⊂ C 1
4

⊂ U 1
2

⊂ C 1
2

⊂ U 3
4

⊂ C 3
4

⊂ U1.

Inductively, one constructs, for all dyadic rationals, open sets Ur, with the property that

s < r =⇒ Us ⊂ Ur.

Define

f : X −→ [0, 1], f(x) =

{
1 x 6∈ ∪rUr;
inf{r | x ∈ Ur} x ∈ ∪rUr.

Because dyadic fractions are dense and Us ⊂ Ur if s < r, we have

x ∈ Ur =⇒ f(x) 6 r, f(x) < r =⇒ x ∈ Ur,

and therefore
f−1[0, t) =

⋃
r<t

Ur, f−1(t, 1] =
⋃
t<r

(X�Ur).

An open cover U of topological space (X,TX) is a set of open subsets, and we say that U
covers a subset Y ⊂ X if Y ⊂ ∪U∈UU . An open cover is a basis if, for all V ⊂ X open and
x ∈ V , there is U ∈ U with x ∈ U ⊂ V . A topology T on X is second-countable if there is
it has a countable basis.

Exercise 72. A second-countable regular space is normal.
Let A,B ⊂ X be disjoint closed subsets, and let B be a countable basis. Let

U = {U ∈ B | x ∈ U ⊂ U ⊂ X�B, x ∈ A}, V = {V ∈ B | x ∈ V ⊂ V ⊂ X�A, x ∈ B}

These are countable sets, and define

U ′r := Ur� ∪r1 Vi, V ′r := Vr� ∪r1 Ui

Because A ⊂ ∪rUr and A ∩ Vr = ∅ for all r, it follows that A ⊂ U := ∪rU ′r. Similarly, B ⊂ V := ∪rV ′r . The open sets U, V are

disjoint because x ∈ U ′r ∩ V ′s would imply (if, say, r > s) that x ∈ (Ur�Vs) ∩ Vs.

Exercise 73. A topological space is metrizable if its topology is that induced by a metric.
Second-countable regular topological spaces are metrizable (Urysohn’s metrization theorem).

A subset U ′ ⊂ U is a subcover if U ′ is itself an open cover of Y . A subset Y ⊂ X is
compact if every open cover of Y has a finite subcover, and it is precompact if its closure
is compact. A topological space is locally compact if every open neighborhood of a point
contains a compact neighborhood of it.

Exercise 74. Rm, with the usual topology, is normal, second-countable and locally compact.

If Y is a subset of a topological space (X,TX), the initial topology TY with respect to the
inclusion map iY : Y → X is called the subspace topology, in which U ∈ TY exactly when
U = U ′ ∩ Y for some U ′ ∈ TX .
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Exercise 75. A subspace of a Hausdorff (resp., second-countable) space is again Hausdorff
(resp., second-countable).

Exercise 76. The image of a compact set under a continuous map is compact. A closed
subset of a compact space is compact. Every compact set in a Hausdorff space is closed.

a) Let f : X → Y be continuous, and K ⊂ X be compact. Let U be an open cover of fK. Then f−1U is an open cover of
K; hence there is a finte subcover V , in which case fV is a finite subcover of U . b) If X is compact and C is closed, and U is
an open cover of C, then U ∪ {X�C} is an open cover of X. c) X is Hausdorff iff ∆X ⊂ X ×X is closed. Hence for all x 6= x′,
there are open neighborhoods

x ∈ Ux,x′ , x′ ∈ Vx,x′ , Ux,x′ ∩ Vx,x′ = ∅.

Let K ⊂ X be compact. Let z 6∈ K. Then {Ux,z | x ∈ K} is an open cover of K. Hence K ⊂ Ux1,z∪· · ·∪Uxr,z. Then V = ∪r1Vxr,z
is an open neighborhood of z disjoint from K.

Exercise 77. Let X be a compact space, and Y a Hausdorff space. Then a continuous
bijection f : X → Y is a homeomorphism.

It suffices to show that f−1 is continuous, i.e., that f is open. Equivalently, we show that f is closed: if C ⊂ X is closed,

then it is compact, hence fC ⊂ Y is compact, hence closed, because Y is Hausdorff.

Exercise 78. Let Y be second-countable, locally compact and Hausdorff, and f : X → Y a
proper map. Then f is closed.

Let Yn ⊂ Y be precompact open sets, such that Yn ⊂ Yn+1 and Y = ∪nYn. Because f is continuous, X = ∪nXn, where
Xn := f−1(Yn) are open and Xn ⊂ Xn+1. Because f is proper,the Xn’s are all precompact.

Let now F ⊂ X be closed. Then f |Xn : Xn → Yn is a continuous map from a compact space to a Hausdorff space, so (as in
Exercise 77) it is a closed map. Hence f(X) ∩ Yn is closed in Yn for each n.

Let y ∈ Yn0�fF . Then for each n > n0, there are open sets y ∈ Un ⊂ Y , such that Un ∩ fF ∩ Yn = ∅. Because Y is locally
compact, we may take such Un to be precompact; this implies that we can define a function λ : N→ N by

λ(n) = min{m | Un ⊂ Ym}

Then set V := Un0 ∩Uλ(n0). It is an open, precompact neighborhood of y, whose closure is entirely contained in Yλ(n0), and which
does not meet fF . Hence Y�fF is open — i.e., f is a closed map.

An open cover U is locally finite if each x ∈ X lying in a subset U ∈ U lies in finitely
many such subsets. Given open covers U ,V of Y , we say that V refines U if every V ∈ V is a
subset of some U ∈ U . A topological space is paracompact if every open cover U of X has a
locally finite refinement.

Exercise 79. A Hausdorff, second countable, locally compact topological space (X,T ) is
paracompact.
1) The subset consisting of precompact open sets in a basis of X is again a basis. For if B is a basis of X, let Bc = {U ∈

B | U is compact}. Let O ⊂ X be open, and let x ∈ Kx ⊂ X be a compact neighborhood of x. Then we can find U ∈ B such
that x ∈ Ux ⊂ O ∩Kx. Then Ux ∈ Bc, and O = ∪x∈OUx.

2) There is a countable precompact open cover V = {Vi | i ∈ N} satisfying Vi ⊂ Vi+1. Indeed, if (Ui) is a countable precompact
cover, and Oi := ∪i1Ui, then because Oi is compact, there is a smallest mi > m such that Oi ⊂ Om(i). Then Vi := ∪mi1 Ui is
the desired cover.

3) Let U be an open cover of X, and V the countable, precompact open cover of item 2). Then for each i ∈ N, Ki := Vi�Vi−1 is
a compact set, and because Vi ⊂ Vi+1, it follows that Wi := Vi+1�Vi−2 is an open neighborhood of Ki. Hence

Ui = {U ∩Wi | U ∈ U}

is an open cover of the compact set Ki, and therefore has a finite subcover Λi. Then Λ := ∪i∈NΛi is an at most countable open
cover of X, which refines U . It consists of precompact sets, and is locally finite because by construction, no x ∈ Vi belongs to
a set in Λj if i+ 2 6 j; in particular, x lies in finitely many sets in Λ.

2. Calculus

Let V and W be vector spaces. A map f : U → W from an open set U ⊂ V is called
differentiable if, for all x ∈ U and v ∈ V , the limits

Dvf(x) := lim
t→0

f(x+tv)−f(x)
t

exist. f is continuously differentiable if the ensuing map Df : U × V → W is continuous.
It is smooth if all iterated derivatives

Drf : U × V × · · · × V︸ ︷︷ ︸
r

−→ W, Drf(x; v1, ..., vr) := (DvrDvr−1 · · ·Dv1f)(x)

exist and are continuously differentiable.
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Theorem. For a smooth function f : U → W , x ∈ U and v, v1, ..., vr ∈ V :
a) Df(x) : V → W is linear;
b) If x+ [0, 1]v ⊂ U , then

f(x+ v) = f(x) +

∫ 1

0

Df(x+ tv)(v)dt;(4)

c) f is locally constant iff Df = 0;
d) Drf(x) is symmetric: for any permutation in r letters σ,

Drf(x)(v1, ..., vr) = Drf(x)(vσ(1), ..., vσ(r));

e) If f(U) lies in an open O ⊂ W , and g : O → Z is another smooth map, then

D(g ◦ f)(x) = D(g)(f(x)) ◦D(f)(x).(5)

Theorem. For a smooth function f : U → W , define

Taylrf : U −→ Polr(V,W ), Taylrf(x)v =
r∑
i=0

1
i!
Di
vf(x).(6)

If g : W ⊃ U ′ → Z is a further smooth map, and fU ⊂ U ′, then

Taylr(g ◦ f)(x) = Taylrg(f(x)) · Taylrf(x),

where · denotes truncation of the composition. Moreover, if x+ [0, 1]v ⊂ U , then

f(x+ v) = Taylrf(x)v + 1
r!

∫ 1

0

(1− t)rDr+1f(x+ tv)(v, ..., v)dt.(7)

Theorem (Implicit Function Theorem). Let F : V × W → W be a smooth map, and
(x0, y0) ∈ V × W be such that D2f : Ty0W → TF (x0,y0)W is an isomorphism. Then around
(x0, y0), the preimage F−1F (x0, y0) is the graph of a smooth map. That is: there are open
neighborhoods x0 ∈ U ⊂ V and y0 ∈ U ′ ⊂ W and a smooth map φ : U → U ′, such that

F (x, y) = F (x0, y0) ⇐⇒ y = φ(x)

for all (x, y) ∈ U × U ′.

Theorem (Inverse Function Theorem). Let f : U → W be a smooth map, such that Df(x)
is an isomorphism. Then there is an open neighborhood U ′ ⊂ W of f(x), together with a smooth
map g : U ′ → U , such that f ◦ g = idU ′ and g ◦ f |gU ′ = idgU ′.

Consider a smooth map v : R× Rm → Rm. An equation of the form
d
dt
c(t) = v(t, c(t))

on curves c : (a, b)→ Rm is called an ordinary differential equation (ODE).

Theorem (Fundamental Theorem of ODEs). Through every point x ∈ Rm there passes a
unique maximal solution cx : (ax, bx) → Rm of the ODE d

dt
c(t) = v(t, c(t)), with cx(0) = x.

Moreover, the map

φ : R× Rm ⊃ U :=
⋃
x∈Rm

(ax, bx)× {x} −→ Rm, φ(t, x) = cx(t),

is smooth.

Given points a, b ∈ Rm, we construct the rectangle

�ba = {x ∈ Rm | ai 6 xi < bi, 1 6 i 6 m}, �1
0 := �(1,...,1)

(0,...,0).

Consider a collection D ⊂P(Rm), such that
D1) A,B ∈ D implies that A ∪B,A ∩B,A�B lie in D ;
D2) If A ∈ D and T is a translation, then TA ∈ D ;
D3) �1

0 ∈ D .
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We consider functions µ : D → R satisfying:
µ1) µ(A) > 0;
µ2) If A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B);
µ3) For any translation T , µ(A) = µ(TA);
µ4) µ(�1

0) = 1.
For example, the collection Dpav of all paved sets S ⊂ Rm, i.e., disjoint unions of finitely

many rectangles satisfies D1) - D3), and the assignment µ : Dpav → R

µ(�ba) :=

{
0, �ba = ∅;∏r

i=1(bi − ai), �ba 6= ∅.

satisfies µ1)-µ4). Define the inner- and outer content of a subset A ⊂ Rm by

µ−(A) := sup
S⊂A

µ(S), µ+(A) := inf
S⊃A

µ(S).(8)

A set A is contented if µ−(A) = µ+(A), in which case we call this quantity the content
µ(A) of A. The collection Dcont of contented sets satisfies D1) - D3), and the assignment
µ : Dcont → R of (8) satisfies µ1)-µ4).

A set A is contented iff its boundary ∂A is contented and has content zero. Any subset of
a set of content zero has content zero, and a set has content zero iff for all ε > 0, it is a subset
of a paved set of content at most ε. If φ : U → Rm is smooth and A ∈ Dcont is bounded of
content zero and A ⊂ U , then φA has content zero.

Exercise 80. Let v1, ..., vm ∈ Rm. Then

A = {
n∑
1

tivi | ti ∈ [0, 1]} =⇒ µ(A) =
√
| det〈vi, vj〉|.

A function is paved if it is a finite sum f =
∑
� a�χ�, where a� ∈ R and χ� is the

characteristic function of the square �. For a such function we define∫
f =

∑
a�µ(�).

A function f is contented if, for all ε > 0, there exist paved functions h, k, such that

h 6 f 6 k,

∫
(k − h) < ε.

For example, the characteristic function χA of a set A is contented exactly when A is contented.

Exercise 81. A bounded function of compact support which is continuous except at a set
of content zero is contented.

We denote by C (Rm) the set of contented functions, and define a function
∫

dµ : C → R
by: ∫

f := sup{
∫
h | h is paved and h 6 f} = inf{

∫
k | k is paved and f 6 k}

Then:∫
1)

∫
is a linear function;∫

2)
∫
Tf =

∫
f for every translation T ;∫

3)
∫
f > 0 if f > 0;∫

4)
∫
χ�1

0
= 1

For a contented set A and a contented function f , we define the integral of f over A by:∫
A

f :=

∫
χAf.

Theorem. Let f, g be contented functions, and A,A1, A2 contented sets. Then:
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a) If f and g coincide outside A, and µ(A) = 0, then
∫
f =

∫
g;

b)
∫
A1∪A2

f =
∫
A1
f +

∫
A2
f −

∫
A1∩A2

f ;
c) |

∫
A
f | 6 supx∈A |f(x)|µ(A);

d) If φ : U → U ′ is a diffeomorphism between bounded open sets in Rm, and supp(f) ⊂ U ′,
then f ◦ φ is contented and ∫

U ′
f =

∫
U

(f ◦ φ)| detDφ|.(9)

3. Algebra

§1. Let k be a field. A k-algebra is a vector space A over k, endowed with a k-bilinear map
• : A× A −→ A, (a, b) 7→ a • b.

A derivation of (A, •) is a linear map D : A→ A, such that
D(a • b) = (Da) • b+ a • (Db).

§2. A Z-grading on a k-vector space A is the data of a direct sum decomposition A =
⊕n∈ZAn. Each a ∈ An is said to have degree |a| = n. If (A, •) is a k-algebra, and A has
a Z-grading, we say that • has degree k if An • Am ⊂ An+m+k, in which case we say that
it is a graded algebra of degree k. A such graded algebra of degree k is commutative (resp.,
anticommutative) if

a • b = (−1)(|a|−k)(|b|−k)b • a, resp., a • b = −(−1)(|a|−k)(|b|−k)b • a
§3. A linear endomorphism D : A → A of a graded vector space is said to be graded of

degree d ∈ Z if D(Am) ⊂ Ad+m for all m ∈ Z, and we denote by Endd(A) the k-vector space of
graded endomorphisms of degree d. A linear endomorphism D ∈ Endd(A) is a graded derivation
of a graded algebra (A, •) of degree k if

D(a • b) = (Da) • b+ (−1)d|a|a • (Db).

§4. A pre-Lie algebra of degree k is an anticommutative, graded algebra of degree k. In
that case, a• ∈ End|a|+k(A). A pre-Lie algebra of degree k is a Lie algebra of degree k if each
a• is a graded derivation:

a • (b • c) = ((a • b) • c) + (−1)(|a|+k)|b|b • (a • c).

Exercise 82. If V is a graded vector space, then A := ⊕d∈ZEndd(V ) is a graded algebra of
degree zero under composition:

◦ : Ap × Aq −→ Ap+q, (D,D′) 7→ D ◦D′,
and a Lie algebra of degree zero under the graded commutator:

[D,D′]c := D ◦D′ − (−1)dd
′
D′ ◦D.
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