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FIGURE 4 The optimum public works schedule
is .2:1; 1:4/.

and define

x1 D x

3
; x2 D y

2
; that is; x D 3x1 and y D 2x2

Then the constraint equation becomes

x2
1 C x2

2 D 1

and the utility function becomes q.3x1; 2x2/ D .3x1/.2x2/ D 6x1x2. Let x D
�

x1

x2

�
.

Then the problem is to maximize Q.x/ D 6x1x2 subject to xTx D 1. Note that Q.x/ D
xTAx, where

A D
�

0 3

3 0

�

The eigenvalues of A are ˙3, with eigenvectors

"
1=

p
2

1=
p

2

#
for � D 3 and

"
�1=

p
2

1=
p

2

#
for

� D �3. Thus the maximum value of Q.x/ D q.x1; x2/ is 3, attained when x1 D 1=
p

2

and x2 D 1=
p

2.
In terms of the original variables, the optimum public works schedule is x D 3x1 D

3=
p

2 � 2:1 hundred miles of roads and bridges and y D 2x2 D p
2 � 1:4 hundred

acres of parks and recreational areas. The optimum public works schedule is the point
where the constraint curve and the indifference curve q.x; y/ D 3 just meet. Points
.x; y/ with a higher utility lie on indifference curves that do not touch the constraint
curve. See Figure 4.

PRACTICE PROBLEMS

1. Let Q.x/ D 3x2
1 C 3x2

2 C 2x1x2. Find a change of variable that transforms Q into a
quadratic form with no cross-product term, and give the new quadratic form.

2. With Q as in Problem 1, find the maximum value of Q.x/ subject to the constraint
xTx D 1, and find a unit vector at which the maximum is attained.

7.3 EXERCISES
In Exercises 1 and 2, find the change of variable x D P y that
transforms the quadratic form xTAx into yTDy as shown.

1. 5x2
1 C6x2

2 C7x2
3 C4x1x2�4x2x3 D9y2

1 C6y2
2 C3y2

3

2. 3x2
1 C3x2

2 C5x2
3 C6x1x2C2x1x3C2x2x3 D7y2

1 C4y2
2

Hint: x and y must have the same number of coordinates, so the
quadratic form shown here must have a coefficient of zero for y2

3 .

In Exercises 3–6, find (a) the maximum value of Q.x/ subject to
the constraint xTx D 1, (b) a unit vector u where this maximum is
attained, and (c) the maximum of Q.x/ subject to the constraints
xTx D 1 and xTu D 0.

3. Q.x/ D 5x2
1 C 6x2

2 C 7x2
3 C 4x1x2 � 4x2x3

(See Exercise 1.)

SECOND REVISED PAGES



416 CHAPTER 7 Symmetric Matrices and Quadratic Forms

4. Q.x/ D 3x2
1 C3x2

2 C5x2
3 C6x1x2C2x1x3C2x2x3 (See Exer-

cise 2.)

5. Q.x/ D x2
1 C x2

2 � 10x1x2

6. Q.x/ D 3x2
1 C 9x2

2 C 8x1x2

7. Let Q.x/ D �2x2
1 � x2

2 C 4x1x2 C 4x2x3. Find a unit vector
x in R3 at which Q.x/ is maximized, subject to xTx D 1.
[Hint: The eigenvalues of the matrix of the quadratic form
Q are 2, �1, and �4.]

8. Let Q.x/ D 7x2
1 C x2

2 C 7x2
3 � 8x1x2 � 4x1x3 � 8x2x3.

Find a unit vector x in R3 at which Q.x/ is maximized,
subject to xTx D 1. [Hint: The eigenvalues of the matrix of
the quadratic form Q are 9 and �3.]

9. Find the maximum value of Q.x/ D 7x2
1 C 3x2

2 � 2x1x2,
subject to the constraint x2

1 C x2
2 D 1. (Do not go on to find

a vector where the maximum is attained.)

10. Find the maximum value of Q.x/ D �3x2
1 C 5x2

2 � 2x1x2,
subject to the constraint x2

1 C x2
2 D 1. (Do not go on to find

a vector where the maximum is attained.)

11. Suppose x is a unit eigenvector of a matrix A corresponding
to an eigenvalue 3. What is the value of xTAx?

12. Let � be any eigenvalue of a symmetric matrix A. Justify
the statement made in this section that m � � � M , where
m and M are defined as in (2). [Hint: Find an x such that
� D xTAx.]

13. Let A be an n � n symmetric matrix, let M and m denote the
maximum and minimum values of the quadratic form xTAx,
where xT x D 1; and denote corresponding unit eigenvectors
by u1 and un. The following calculations show that given any
number t between M and m, there is a unit vector x such that
t D xTAx. Verify that t D .1 � ˛/m C ˛M for some number
˛ between 0 and 1. Then let x D p

1 � ˛un C p
˛u1, and

show that xTx D 1 and xTAx D t .

[M] In Exercises 14–17, follow the instructions given for Exer-
cises 3–6.

14. 3x1x2 C 5x1x3 C 7x1x4 C 7x2x3 C 5x2x4 C 3x3x4

15. 4x2
1 �6x1x2�10x1x3�10x1x4�6x2x3�6x2x4�2x3x4

16. �6x2
1 �10x2

2 �13x2
3 �13x2

4 �4x1x2�4x1x3�4x1x4C6x3x4

17. x1x2 C 3x1x3 C 30x1x4 C 30x2x3 C 3x2x4 C x3x4

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix of the quadratic form is A D
�

3 1

1 3

�
. It is easy to find the eigenvalues,

1
1 x2

x1

4

z

The maximum value of Q.x/
subject to xT x D 1 is 4.

4 and 2, and corresponding unit eigenvectors,

"
1=

p
2

1=
p

2

#
and

"
�1=

p
2

1=
p

2

#
. So the

desired change of variable is x D P y, where P D
"

1=
p

2 �1=
p

2

1=
p

2 1=
p

2

#
. (A common

error here is to forget to normalize the eigenvectors.) The new quadratic form is
yTDy D 4y2

1 C 2y2
2 .

2. The maximum of Q.x/, for a unit vector x, is 4 and the maximum is attained at

the unit eigenvector

�
1=

p
2

1=
p

2

�
. [A common incorrect answer is

�
1

0

�
. This vector

maximizes the quadratic form yTDy instead of Q.x/.]

7.4 THE SINGULAR VALUE DECOMPOSITION

The diagonalization theorems in Sections 5.3 and 7.1 play a part in many interesting ap-
plications. Unfortunately, as we know, not all matrices can be factored as A D PDP �1

with D diagonal. However, a factorization A D QDP �1 is possible for any m � n

matrix A! A special factorization of this type, called the singular value decomposition,
is one of the most useful matrix factorizations in applied linear algebra.

The singular value decomposition is based on the following property of the ordinary
diagonalization that can be imitated for rectangular matrices: The absolute values of the
eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks

SECOND REVISED PAGES


