

FIGURE 4 The optimum public works schedule is $(2.1,1.4)$.
and define

$$
x_{1}=\frac{x}{3}, \quad x_{2}=\frac{y}{2}, \quad \text { that is, } \quad x=3 x_{1} \quad \text { and } \quad y=2 x_{2}
$$

Then the constraint equation becomes

$$
x_{1}^{2}+x_{2}^{2}=1
$$

and the utility function becomes $q\left(3 x_{1}, 2 x_{2}\right)=\left(3 x_{1}\right)\left(2 x_{2}\right)=6 x_{1} x_{2}$. Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Then the problem is to maximize $Q(\mathbf{x})=6 x_{1} x_{2}$ subject to $\mathbf{x}^{T} \mathbf{x}=1$. Note that $Q(\mathbf{x})=$ $\mathbf{x}^{T} A \mathbf{x}$, where

$$
A=\left[\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right]
$$

The eigenvalues of A are ± 3, with eigenvectors $\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ for $\lambda=3$ and $\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ for $\lambda=-3$. Thus the maximum value of $Q(\mathbf{x})=q\left(x_{1}, x_{2}\right)$ is 3 , attained when $x_{1}=1 / \sqrt{2}$ and $x_{2}=1 / \sqrt{2}$.

In terms of the original variables, the optimum public works schedule is $x=3 x_{1}=$ $3 / \sqrt{2} \approx 2.1$ hundred miles of roads and bridges and $y=2 x_{2}=\sqrt{2} \approx 1.4$ hundred acres of parks and recreational areas. The optimum public works schedule is the point where the constraint curve and the indifference curve $q(x, y)=3$ just meet. Points (x, y) with a higher utility lie on indifference curves that do not touch the constraint curve. See Figure 4.

PRACTICE PROBLEMS

1. Let $Q(\mathbf{x})=3 x_{1}^{2}+3 x_{2}^{2}+2 x_{1} x_{2}$. Find a change of variable that transforms Q into a quadratic form with no cross-product term, and give the new quadratic form.
2. With Q as in Problem 1, find the maximum value of $Q(\mathbf{x})$ subject to the constraint $\mathbf{x}^{T} \mathbf{x}=1$, and find a unit vector at which the maximum is attained.

7.3 EXERCISES

In Exercises 1 and 2, find the change of variable $\mathbf{x}=P \mathbf{y}$ that transforms the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ into $\mathbf{y}^{T} D \mathbf{y}$ as shown.

1. $5 x_{1}^{2}+6 x_{2}^{2}+7 x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}=9 y_{1}^{2}+6 y_{2}^{2}+3 y_{3}^{2}$
2. $3 x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}+6 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}=7 y_{1}^{2}+4 y_{2}^{2}$

Hint: \mathbf{x} and \mathbf{y} must have the same number of coordinates, so the quadratic form shown here must have a coefficient of zero for y_{3}^{2}.

In Exercises 3-6, find (a) the maximum value of $Q(\mathbf{x})$ subject to the constraint $\mathbf{x}^{T} \mathbf{x}=1$, (b) a unit vector \mathbf{u} where this maximum is attained, and (c) the maximum of $Q(\mathbf{x})$ subject to the constraints $\mathbf{x}^{T} \mathbf{x}=1$ and $\mathbf{x}^{T} \mathbf{u}=0$.
3. $\underset{\sim}{Q}(\mathbf{x})=5 x_{1}^{2}+6 x_{2}^{2}+7 x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}$ (See Exercise 1.)
4. $Q(\mathbf{x})=3 x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}+6 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}$ (See Exercise 2.)
5. $Q(\mathbf{x})=x_{1}^{2}+x_{2}^{2}-10 x_{1} x_{2}$
6. $Q(\mathbf{x})=3 x_{1}^{2}+9 x_{2}^{2}+8 x_{1} x_{2}$
7. Let $Q(\mathbf{x})=-2 x_{1}^{2}-x_{2}^{2}+4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a unit vector \mathbf{x} in \mathbb{R}^{3} at which $Q(\mathbf{x})$ is maximized, subject to $\mathbf{x}^{T} \mathbf{x}=1$. [Hint: The eigenvalues of the matrix of the quadratic form Q are $2,-1$, and -4 .]
8. Let $Q(\mathbf{x})=7 x_{1}^{2}+x_{2}^{2}+7 x_{3}^{2}-8 x_{1} x_{2}-4 x_{1} x_{3}-8 x_{2} x_{3}$. Find a unit vector \mathbf{x} in \mathbb{R}^{3} at which $Q(\mathbf{x})$ is maximized, subject to $\mathbf{x}^{T} \mathbf{x}=1$. [Hint: The eigenvalues of the matrix of the quadratic form Q are 9 and -3.]
9. Find the maximum value of $Q(\mathbf{x})=7 x_{1}^{2}+3 x_{2}^{2}-2 x_{1} x_{2}$, subject to the constraint $x_{1}^{2}+x_{2}^{2}=1$. (Do not go on to find a vector where the maximum is attained.)
10. Find the maximum value of $Q(\mathbf{x})=-3 x_{1}^{2}+5 x_{2}^{2}-2 x_{1} x_{2}$, subject to the constraint $x_{1}^{2}+x_{2}^{2}=1$. (Do not go on to find a vector where the maximum is attained.)
11. Suppose \mathbf{x} is a unit eigenvector of a matrix A corresponding to an eigenvalue 3 . What is the value of $\mathbf{x}^{T} A \mathbf{x}$?
12. Let λ be any eigenvalue of a symmetric matrix A. Justify the statement made in this section that $m \leq \lambda \leq M$, where m and M are defined as in (2). [Hint: Find an \mathbf{x} such that $\lambda=\mathbf{x}^{T} A \mathbf{x}$.]
13. Let A be an $n \times n$ symmetric matrix, let M and m denote the maximum and minimum values of the quadratic form $\mathbf{x}^{T} A \mathbf{x}$, where $\mathbf{x}^{T} \mathbf{x}=1$, and denote corresponding unit eigenvectors by \mathbf{u}_{1} and \mathbf{u}_{n}. The following calculations show that given any number t between M and m, there is a unit vector \mathbf{x} such that $t=\mathbf{x}^{T} A \mathbf{x}$. Verify that $t=(1-\alpha) m+\alpha M$ for some number α between 0 and 1. Then let $\mathbf{x}=\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}$, and show that $\mathbf{x}^{T} \mathbf{x}=1$ and $\mathbf{x}^{T} A \mathbf{x}=t$.
[M] In Exercises 14-17, follow the instructions given for Exercises 3-6.
14. $3 x_{1} x_{2}+5 x_{1} x_{3}+7 x_{1} x_{4}+7 x_{2} x_{3}+5 x_{2} x_{4}+3 x_{3} x_{4}$
15. $4 x_{1}^{2}-6 x_{1} x_{2}-10 x_{1} x_{3}-10 x_{1} x_{4}-6 x_{2} x_{3}-6 x_{2} x_{4}-2 x_{3} x_{4}$
16. $-6 x_{1}^{2}-10 x_{2}^{2}-13 x_{3}^{2}-13 x_{4}^{2}-4 x_{1} x_{2}-4 x_{1} x_{3}-4 x_{1} x_{4}+6 x_{3} x_{4}$
17. $x_{1} x_{2}+3 x_{1} x_{3}+30 x_{1} x_{4}+30 x_{2} x_{3}+3 x_{2} x_{4}+x_{3} x_{4}$

SOLUTIONS TO PRACTICE PROBLEMS

The maximum value of $Q(\mathbf{x})$ subject to $\mathbf{x}^{T} \mathbf{x}=1$ is 4 .

1. The matrix of the quadratic form is $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. It is easy to find the eigenvalues, 4 and 2 , and corresponding unit eigenvectors, $\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and $\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$. So the desired change of variable is $\mathbf{x}=P \mathbf{y}$, where $P=\left[\begin{array}{rr}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$. (A common error here is to forget to normalize the eigenvectors.) The new quadratic form is $\mathbf{y}^{T} D \mathbf{y}=4 y_{1}^{2}+2 y_{2}^{2}$.
2. The maximum of $Q(\mathbf{x})$, for a unit vector \mathbf{x}, is 4 and the maximum is attained at the unit eigenvector $\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$. [A common incorrect answer is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. This vector maximizes the quadratic form $\mathbf{y}^{T} D \mathbf{y}$ instead of $Q(\mathbf{x})$.]

7.4 THE SINGULAR VALUE DECOMPOSITION

The diagonalization theorems in Sections 5.3 and 7.1 play a part in many interesting applications. Unfortunately, as we know, not all matrices can be factored as $A=P D P^{-1}$ with D diagonal. However, a factorization $A=Q D P^{-1}$ is possible for any $m \times n$ matrix A ! A special factorization of this type, called the singular value decomposition, is one of the most useful matrix factorizations in applied linear algebra.

The singular value decomposition is based on the following property of the ordinary diagonalization that can be imitated for rectangular matrices: The absolute values of the eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks

