7.2 Quadratic Forms 409

- **5.** Find the matrix of the quadratic form. Assume **x** is in \mathbb{R}^3 . a. $3x_1^2 + 2x_2^2 - 5x_3^2 - 6x_1x_2 + 8x_1x_3 - 4x_2x_3$
 - b. $6x_1x_2 + 4x_1x_3 10x_2x_3$
- **6.** Find the matrix of the quadratic form. Assume **x** is in \mathbb{R}^3 . a. $3x_1^2 - 2x_2^2 + 5x_3^2 + 4x_1x_2 - 6x_1x_3$ b. $4x_3^2 - 2x_1x_2 + 4x_2x_3$
- 7. Make a change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $x_1^2 + 10x_1x_2 + x_2^2$ into a quadratic form with no cross-product term. Give P and the new quadratic form.
- 8. Let A be the matrix of the quadratic form

$$9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$$

It can be shown that the eigenvalues of A are 3, 9, and 15. Find an orthogonal matrix P such that the change of variable $\mathbf{x} = P \mathbf{y}$ transforms $\mathbf{x}^T A \mathbf{x}$ into a quadratic form with no crossproduct term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9-18. Then make a change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct P using the methods of Section 7.1.

- 9. $4x_1^2 4x_1x_2 + 4x_2^2$ 10. $2x_1^2 + 6x_1x_2 6x_2^2$ 11. $2x_1^2 4x_1x_2 x_2^2$ 12. $-x_1^2 2x_1x_2 x_2^2$ 13. $x_1^2 6x_1x_2 + 9x_2^2$ 14. $3x_1^2 + 4x_1x_2$
- **15.** [**M**] $-3x_1^2 7x_2^2 10x_3^2 10x_4^2 + 4x_1x_2 + 4x_1x_3 +$ $4x_1x_4 + 6x_3x_4$
- **16.** [**M**] $4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_4^2 + 8x_1x_2 + 8x_3x_4 6x_1x_4 +$ $6x_2x_2$
- **17.** [**M**] $11x_1^2 + 11x_2^2 + 11x_3^2 + 11x_4^2 + 16x_1x_2 12x_1x_4 +$ $12x_2x_3 + 16x_3x_4$
- **18.** [**M**] $2x_1^2 + 2x_2^2 6x_1x_2 6x_1x_3 6x_1x_4 6x_2x_3 6x_1x_4 6x_1x_4 6x_1x_4 6x_2x_3 6x_1x_4 6x_1$ $6x_2x_4 - 2x_3x_4$
- 19. What is the largest possible value of the quadratic form $5x_1^2 + 8x_2^2$ if $\mathbf{x} = (x_1, x_2)$ and $\mathbf{x}^T \mathbf{x} = 1$, that is, if $x_1^2 + x_2^2 = 1$? (Try some examples of **x**.)
- **20.** What is the largest value of the quadratic form $5x_1^2 3x_2^2$ if $\mathbf{x}^T \mathbf{x} = 1?$

In Exercises 21 and 22, matrices are $n \times n$ and vectors are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

- **21.** a. The matrix of a quadratic form is a symmetric matrix.
 - b. A quadratic form has no cross-product terms if and only if the matrix of the quadratic form is a diagonal matrix.
 - c. The principal axes of a quadratic form $\mathbf{x}^T A \mathbf{x}$ are eigenvectors of A.

- d. A positive definite quadratic form Q satisfies $Q(\mathbf{x}) > 0$ for all **x** in \mathbb{R}^n .
- e. If the eigenvalues of a symmetric matrix A are all positive, then the quadratic form $\mathbf{x}^T A \mathbf{x}$ is positive definite.
- f. A Cholesky factorization of a symmetric matrix A has the form $A = R^T R$, for an upper triangular matrix R with positive diagonal entries.
- **22.** a. The expression $\|\mathbf{x}\|^2$ is not a quadratic form.
 - b. If A is symmetric and P is an orthogonal matrix, then the change of variable $\mathbf{x} = P\mathbf{y}$ transforms $\mathbf{x}^T A \mathbf{x}$ into a quadratic form with no cross-product term.
 - c. If A is a 2×2 symmetric matrix, then the set of x such that $\mathbf{x}^T A \mathbf{x} = c$ (for a constant c) corresponds to either a circle, an ellipse, or a hyperbola.
 - d. An indefinite quadratic form is neither positive semidefinite nor negative semidefinite.
 - e. If A is symmetric and the quadratic form $\mathbf{x}^T A \mathbf{x}$ has only negative values for $\mathbf{x} \neq \mathbf{0}$, then the eigenvalues of A are all positive.

Exercises 23 and 24 show how to classify a quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, when $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$ and det $A \neq 0$, without finding the eigenvalues of A.

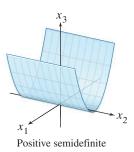
- **23.** If λ_1 and λ_2 are the eigenvalues of A, then the characteristic polynomial of A can be written in two ways: $det(A - \lambda I)$ and $(\lambda - \lambda_1)(\lambda - \lambda_2)$. Use this fact to show that $\lambda_1 + \lambda_2 =$ a + d (the diagonal entries of A) and $\lambda_1 \lambda_2 = \det A$.
- 24. Verify the following statements.
 - a. *Q* is positive definite if det A > 0 and a > 0.
 - b. *Q* is negative definite if det A > 0 and a < 0.
 - c. *O* is indefinite if det A < 0.
- **25.** Show that if B is $m \times n$, then $B^T B$ is positive semidefinite; and if B is $n \times n$ and invertible, then $B^T B$ is positive definite.
- Show that if an $n \times n$ matrix A is positive definite, then there 26. exists a positive definite matrix B such that $A = B^T B$. [Hint: Write $A = PDP^T$, with $P^T = P^{-1}$. Produce a diagonal matrix C such that $D = C^T C$, and let $B = P C P^T$. Show that B works.]
- **27.** Let A and B be symmetric $n \times n$ matrices whose eigenvalues are all positive. Show that the eigenvalues of A + B are all positive. [*Hint:* Consider quadratic forms.]
- **28.** Let A be an $n \times n$ invertible symmetric matrix. Show that if the quadratic form $\mathbf{x}^T A \mathbf{x}$ is positive definite, then so is the quadratic form $\mathbf{x}^T A^{-1} \mathbf{x}$. [*Hint:* Consider eigenvalues.]

Mastering: Diagonalization and Quadratic Forms 7-7 SG

L

I

410 CHAPTER 7 Symmetric Matrices and Quadratic Forms



SOLUTION TO PRACTICE PROBLEM

Make an orthogonal change of variable $\mathbf{x} = P\mathbf{y}$, and write

$$\mathbf{x}^{T} A \mathbf{x} = \mathbf{y}^{T} D \mathbf{y} = \lambda_{1} y_{1}^{2} + \lambda_{2} y_{2}^{2} + \dots + \lambda_{n} y_{n}^{2}$$

as in equation (4). If an eigenvalue—say, λ_i —were negative, then $\mathbf{x}^T A \mathbf{x}$ would be negative for the \mathbf{x} corresponding to $\mathbf{y} = \mathbf{e}_i$ (the *i*th column of I_n). So the eigenvalues of a positive semidefinite quadratic form must all be nonnegative. Conversely, if the eigenvalues are nonnegative, the expansion above shows that $\mathbf{x}^T A \mathbf{x}$ must be positive semidefinite.

7.3 CONSTRAINED OPTIMIZATION

Engineers, economists, scientists, and mathematicians often need to find the maximum or minimum value of a quadratic form $Q(\mathbf{x})$ for \mathbf{x} in some specified set. Typically, the problem can be arranged so that \mathbf{x} varies over the set of unit vectors. This *constrained optimization problem* has an interesting and elegant solution. Example 6 below and the discussion in Section 7.5 will illustrate how such problems arise in practice.

The requirement that a vector \mathbf{x} in \mathbb{R}^n be a unit vector can be stated in several equivalent ways:

$$\|\mathbf{x}\| = 1, \qquad \|\mathbf{x}\|^2 = 1, \qquad \mathbf{x}^T \mathbf{x} = 1$$

and

$$x_1^2 + x_2^2 + \dots + x_n^2 = 1 \tag{1}$$

The expanded version (1) of $\mathbf{x}^T \mathbf{x} = 1$ is commonly used in applications.

When a quadratic form Q has no cross-product terms, it is easy to find the maximum and minimum of $Q(\mathbf{x})$ for $\mathbf{x}^T \mathbf{x} = 1$.

EXAMPLE 1 Find the maximum and minimum values of $Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

SOLUTION Since x_2^2 and x_3^2 are nonnegative, note that

$$4x_2^2 \le 9x_2^2$$
 and $3x_3^2 \le 9x_3^2$

and hence

$$Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$

$$\leq 9x_1^2 + 9x_2^2 + 9x_3^2$$

$$= 9(x_1^2 + x_2^2 + x_3^2)$$

$$= 9$$

whenever $x_1^2 + x_2^2 + x_3^2 = 1$. So the maximum value of $Q(\mathbf{x})$ cannot exceed 9 when \mathbf{x} is a unit vector. Furthermore, $Q(\mathbf{x}) = 9$ when $\mathbf{x} = (1, 0, 0)$. Thus 9 is the maximum value of $Q(\mathbf{x})$ for $\mathbf{x}^T \mathbf{x} = 1$.

To find the minimum value of $Q(\mathbf{x})$, observe that

$$9x_1^2 \ge 3x_1^2, \qquad 4x_2^2 \ge 3x_2^2$$

and hence

$$Q(\mathbf{x}) \ge 3x_1^2 + 3x_2^2 + 3x_3^2 = 3(x_1^2 + x_2^2 + x_3^2) = 3$$

whenever $x_1^2 + x_2^2 + x_3^2 = 1$. Also, $Q(\mathbf{x}) = 3$ when $x_1 = 0$, $x_2 = 0$, and $x_3 = 1$. So 3 is the minimum value of $Q(\mathbf{x})$ when $\mathbf{x}^T \mathbf{x} = 1$.