5. Find the matrix of the quadratic form. Assume \mathbf{x} is in \mathbb{R}^{3}.
a. $3 x_{1}^{2}+2 x_{2}^{2}-5 x_{3}^{2}-6 x_{1} x_{2}+8 x_{1} x_{3}-4 x_{2} x_{3}$
b. $6 x_{1} x_{2}+4 x_{1} x_{3}-10 x_{2} x_{3}$
6. Find the matrix of the quadratic form. Assume \mathbf{x} is in \mathbb{R}^{3}.
a. $3 x_{1}^{2}-2 x_{2}^{2}+5 x_{3}^{2}+4 x_{1} x_{2}-6 x_{1} x_{3}$
b. $4 x_{3}^{2}-2 x_{1} x_{2}+4 x_{2} x_{3}$
7. Make a change of variable, $\mathbf{x}=P \mathbf{y}$, that transforms the quadratic form $x_{1}^{2}+10 x_{1} x_{2}+x_{2}^{2}$ into a quadratic form with no cross-product term. Give P and the new quadratic form.
8. Let A be the matrix of the quadratic form

$$
9 x_{1}^{2}+7 x_{2}^{2}+11 x_{3}^{2}-8 x_{1} x_{2}+8 x_{1} x_{3}
$$

It can be shown that the eigenvalues of A are 3,9 , and 15 . Find an orthogonal matrix P such that the change of variable $\mathbf{x}=P \mathbf{y}$ transforms $\mathbf{x}^{T} A \mathbf{x}$ into a quadratic form with no crossproduct term. Give P and the new quadratic form.
Classify the quadratic forms in Exercises 9-18. Then make a change of variable, $\mathbf{x}=P \mathbf{y}$, that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct P using the methods of Section 7.1.
9. $4 x_{1}^{2}-4 x_{1} x_{2}+4 x_{2}^{2}$
10. $2 x_{1}^{2}+6 x_{1} x_{2}-6 x_{2}^{2}$
11. $2 x_{1}^{2}-4 x_{1} x_{2}-x_{2}^{2}$
12. $-x_{1}^{2}-2 x_{1} x_{2}-x_{2}^{2}$
13. $x_{1}^{2}-6 x_{1} x_{2}+9 x_{2}^{2}$
14. $3 x_{1}^{2}+4 x_{1} x_{2}$
15. $[\mathbf{M}]-3 x_{1}^{2}-7 x_{2}^{2}-10 x_{3}^{2}-10 x_{4}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+$ $4 x_{1} x_{4}+6 x_{3} x_{4}$
16. $[\mathbf{M}] 4 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{4}^{2}+8 x_{1} x_{2}+8 x_{3} x_{4}-6 x_{1} x_{4}+$ $6 x_{2} x_{3}$
17. $[\mathbf{M}] 11 x_{1}^{2}+11 x_{2}^{2}+11 x_{3}^{2}+11 x_{4}^{2}+16 x_{1} x_{2}-12 x_{1} x_{4}+$ $12 x_{2} x_{3}+16 x_{3} x_{4}$
18. $[\mathbf{M}] 2 x_{1}^{2}+2 x_{2}^{2}-6 x_{1} x_{2}-6 x_{1} x_{3}-6 x_{1} x_{4}-6 x_{2} x_{3}-$ $6 x_{2} x_{4}-2 x_{3} x_{4}$
19. What is the largest possible value of the quadratic form $5 x_{1}^{2}+8 x_{2}^{2}$ if $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{x}^{T} \mathbf{x}=1$, that is, if $x_{1}^{2}+x_{2}^{2}=1$? (Try some examples of \mathbf{x}.)
20. What is the largest value of the quadratic form $5 x_{1}^{2}-3 x_{2}^{2}$ if $\mathbf{x}^{T} \mathbf{x}=1$?

In Exercises 21 and 22, matrices are $n \times n$ and vectors are in \mathbb{R}^{n}. Mark each statement True or False. Justify each answer.
21. a. The matrix of a quadratic form is a symmetric matrix.
b. A quadratic form has no cross-product terms if and only if the matrix of the quadratic form is a diagonal matrix.
c. The principal axes of a quadratic form $\mathbf{x}^{T} A \mathbf{x}$ are eigenvectors of A.
d. A positive definite quadratic form Q satisfies $Q(\mathbf{x})>0$ for all \mathbf{x} in \mathbb{R}^{n}.
e. If the eigenvalues of a symmetric matrix A are all positive, then the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is positive definite.
f. A Cholesky factorization of a symmetric matrix A has the form $A=R^{T} R$, for an upper triangular matrix R with positive diagonal entries.
22. a. The expression $\|\mathbf{x}\|^{2}$ is not a quadratic form.
b. If A is symmetric and P is an orthogonal matrix, then the change of variable $\mathbf{x}=P \mathbf{y}$ transforms $\mathbf{x}^{T} A \mathbf{x}$ into a quadratic form with no cross-product term.
c. If A is a 2×2 symmetric matrix, then the set of \mathbf{x} such that $\mathbf{x}^{T} A \mathbf{x}=c$ (for a constant c) corresponds to either a circle, an ellipse, or a hyperbola.
d. An indefinite quadratic form is neither positive semidefinite nor negative semidefinite.
e. If A is symmetric and the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ has only negative values for $\mathbf{x} \neq \mathbf{0}$, then the eigenvalues of A are all positive.

Exercises 23 and 24 show how to classify a quadratic form $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$, when $A=\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ and $\operatorname{det} A \neq 0$, without finding the eigenvalues of A.
23. If λ_{1} and λ_{2} are the eigenvalues of A, then the characteristic polynomial of A can be written in two ways: $\operatorname{det}(A-\lambda I)$ and $\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$. Use this fact to show that $\lambda_{1}+\lambda_{2}=$ $a+d$ (the diagonal entries of A) and $\lambda_{1} \lambda_{2}=\operatorname{det} A$.
24. Verify the following statements.
a. Q is positive definite if $\operatorname{det} A>0$ and $a>0$.
b. Q is negative definite if $\operatorname{det} A>0$ and $a<0$.
c. Q is indefinite if $\operatorname{det} A<0$.
25. Show that if B is $m \times n$, then $B^{T} B$ is positive semidefinite; and if B is $n \times n$ and invertible, then $B^{T} B$ is positive definite.
26. Show that if an $n \times n$ matrix A is positive definite, then there exists a positive definite matrix B such that $A=B^{T} B$. [Hint: Write $A=P D P^{T}$, with $P^{T}=P^{-1}$. Produce a diagonal matrix C such that $D=C^{T} C$, and let $B=P C P^{T}$. Show that B works.]
27. Let A and B be symmetric $n \times n$ matrices whose eigenvalues are all positive. Show that the eigenvalues of $A+B$ are all positive. [Hint: Consider quadratic forms.]
28. Let A be an $n \times n$ invertible symmetric matrix. Show that if the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is positive definite, then so is the quadratic form $\mathbf{x}^{T} A^{-1} \mathbf{x}$. [Hint: Consider eigenvalues.]

[^0]

SOLUTION TO PRACTICE PROBLEM

Make an orthogonal change of variable $\mathbf{x}=P \mathbf{y}$, and write

$$
\mathbf{x}^{T} A \mathbf{x}=\mathbf{y}^{T} D \mathbf{y}=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

as in equation (4). If an eigenvalue-say, λ_{i}-were negative, then $\mathbf{x}^{T} A \mathbf{x}$ would be negative for the \mathbf{x} corresponding to $\mathbf{y}=\mathbf{e}_{i}$ (the i th column of I_{n}). So the eigenvalues of a positive semidefinite quadratic form must all be nonnegative. Conversely, if the eigenvalues are nonnegative, the expansion above shows that $\mathbf{x}^{T} A \mathbf{x}$ must be positive semidefinite.

7.3 CONSTRAINED OPTIMIZATION

Engineers, economists, scientists, and mathematicians often need to find the maximum or minimum value of a quadratic form $Q(\mathbf{x})$ for \mathbf{x} in some specified set. Typically, the problem can be arranged so that \mathbf{x} varies over the set of unit vectors. This constrained optimization problem has an interesting and elegant solution. Example 6 below and the discussion in Section 7.5 will illustrate how such problems arise in practice.

The requirement that a vector \mathbf{x} in \mathbb{R}^{n} be a unit vector can be stated in several equivalent ways:

$$
\|\mathbf{x}\|=1, \quad\|\mathbf{x}\|^{2}=1, \quad \mathbf{x}^{T} \mathbf{x}=1
$$

and

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1 \tag{1}
\end{equation*}
$$

The expanded version (1) of $\mathbf{x}^{T} \mathbf{x}=1$ is commonly used in applications.
When a quadratic form Q has no cross-product terms, it is easy to find the maximum and minimum of $Q(\mathbf{x})$ for $\mathbf{x}^{T} \mathbf{x}=1$.

EXAMPLE 1 Find the maximum and minimum values of $Q(\mathbf{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}$ subject to the constraint $\mathbf{x}^{T} \mathbf{x}=1$.
SOLUTION Since x_{2}^{2} and x_{3}^{2} are nonnegative, note that

$$
4 x_{2}^{2} \leq 9 x_{2}^{2} \quad \text { and } \quad 3 x_{3}^{2} \leq 9 x_{3}^{2}
$$

and hence

$$
\begin{aligned}
Q(\mathbf{x}) & =9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2} \\
& \leq 9 x_{1}^{2}+9 x_{2}^{2}+9 x_{3}^{2} \\
& =9\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
& =9
\end{aligned}
$$

whenever $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$. So the maximum value of $Q(\mathbf{x})$ cannot exceed 9 when \mathbf{x} is a unit vector. Furthermore, $Q(\mathbf{x})=9$ when $\mathbf{x}=(1,0,0)$. Thus 9 is the maximum value of $Q(\mathbf{x})$ for $\mathbf{x}^{T} \mathbf{x}=1$.

To find the minimum value of $Q(\mathbf{x})$, observe that

$$
9 x_{1}^{2} \geq 3 x_{1}^{2}, \quad 4 x_{2}^{2} \geq 3 x_{2}^{2}
$$

and hence

$$
Q(\mathbf{x}) \geq 3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}=3\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=3
$$

whenever $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$. Also, $Q(\mathbf{x})=3$ when $x_{1}=0, x_{2}=0$, and $x_{3}=1$. So 3 is the minimum value of $Q(\mathbf{x})$ when $\mathbf{x}^{T} \mathbf{x}=1$.

[^0]: SG
 Mastering: Diagonalization and Quadratic Forms 7-7

