KEY TERMS AND CONCEPTS

The future value of a continuous income stream of K dollars per year for N years at interest rate r compounded continuously is

$$
\int_{0}^{N} K e^{r(N-t)} d t
$$

EXAMPLES

The average is given by

$$
\begin{aligned}
& \frac{1}{20-10} \int_{10}^{20}\left[\frac{x^{3}}{200}-8 x+150\right] d x \\
& =\left.\frac{1}{10}\left[\frac{x^{4}}{(4)(200)}-\frac{8}{2} x^{2}+150 x\right]\right|_{10} ^{20} \\
& =\left.\frac{1}{10}\left[\frac{x^{4}}{800}-4 x^{2}+150 x\right]\right|_{10} ^{20} \\
& =\frac{1}{10}\left[\left[\frac{20^{4}}{800}-(4)(20)^{2}+(150)(20)\right]\right. \\
& \left.\quad-\left[\frac{10^{4}}{800}-(4)(10)^{2}+(150)(10)\right]\right]=48.75
\end{aligned}
$$

So, if the number of items varies between 10 and 20, the average price will be $\$ 48.75$.

Chapter 6 Fundamental Concept Check Exercises

1. What does it mean to antidifferentiate a function?
2. State the formula for $\int h(x) d x$ for each of the following functions.
(a) $h(x) x^{r}, r \neq-1$
(b) $h(x)=e^{k x}$
(c) $h(x)=\frac{1}{x}$
(d) $h(x)=f(x)+g(x)$
(e) $h(x)=k f(x)$
3. In the formula $\Delta x=\frac{b-a}{n}$, what do a, b, n, and Δx denote?
4. What is a Riemann sum?
5. Give an interpretation of the area under a rate of change function. Give a concrete example.
6. What is a definite integral?
7. What is the difference between a definite integral and an indefinite integral?
8. State the fundamental theorem of calculus.
9. How is $\left.F(x)\right|_{a} ^{b}$ calculated, and what is it called?
10. Outline a procedure for finding the area of a region bounded by two curves.
11. State the formula for each of the following quantities:
(a) average value of a function
(b) consumers' surplus
(c) future value of an income stream
(d) volume of a solid of revolution

Chapter 6 Review Exercises

Calculate the following integrals.

1. $\int 3^{2} d x$
2. $\int\left(x^{2}-3 x+2\right) d x$
3. $\int \sqrt{x+1} d x$
4. $\int \frac{2}{x+4} d x$
5. $2 \int\left(x^{3}+3 x^{2}-1\right) d x$
6. $\int \sqrt[5]{x+3} d x$
7. $\int e^{-x / 2} d x$
8. $\int \frac{5}{\sqrt{x-7}} d x$
9. $\int\left(3 x^{4}-4 x^{3}\right) d x$
10. $\int(2 x+3)^{7} d x$
11. $\int \sqrt{4-x} d x$
12. $\int\left(\frac{5}{x}-\frac{x}{5}\right) d x$
13. $\int_{-1}^{1}(x+1)^{2} d x$
14. $\int_{0}^{1 / 8} \sqrt[3]{x} d x$
15. $\int_{-1}^{2} \sqrt{2 x+4} d x$
16. $2 \int_{0}^{1}\left(\frac{2}{x+1}-\frac{1}{x+4}\right) d x$
17. $\int_{1}^{2} \frac{4}{x^{5}} d x$
18. $\frac{2}{3} \int_{0}^{8} \sqrt{x+1} d x$
19. $\int_{1}^{4} \frac{1}{x^{2}} d x$
20. $\int_{3}^{6} e^{2-(x / 3)} d x$
21. $\int_{0}^{5}(5+3 x)^{-1} d x$
22. $\int_{-2}^{2} \frac{3}{2 e^{3 x}} d x$
23. $\int_{0}^{\ln 2}\left(e^{x}-e^{-x}\right) d x$
24. $\int_{\ln 2}^{\ln 3}\left(e^{x}+e^{-x}\right) d x$
25. $\int_{0}^{\ln 3} \frac{e^{x}+e^{-x}}{e^{2 x}} d x$
26. $\int_{0}^{1} \frac{3+e^{2 x}}{e^{x}} d x$
27. Find the area under the curve $y=(3 x-2)^{-3}$ from $x=1$ to $x=2$.
28. Find the area under the curve $y=1+\sqrt{x}$ from $x=1$ to $x=9$.

In Exercises 29-36, find the area of the shaded region.
29.

30.

31

32.

33.

34.

35.

36.

37. Find the area of the region bounded by the curves $y=x^{3}-3 x+1$ and $y=x+1$.
38. Find the area of the region between the curves $y=2 x^{2}+x$ and $y=x^{2}+2$ from $x=0$ to $x=2$.
39. Find the function $f(x)$ for which $f^{\prime}(x)=(x-5)^{2}$, $f(8)=2$.
40. Find the function $f(x)$ for which $f^{\prime}(x)=e^{-5 x}$, $f(0)=1$.
41. Describe all solutions of the following differential equations, where y represents a function of t.
(a) $y^{\prime}=4 t$
(b) $y^{\prime}=4 y$
(c) $y^{\prime}=e^{4 t}$
42. Let k be a constant, and let $y=f(t)$ be a function such that $y^{\prime}=k t y$. Show that $y=C e^{k t^{2} / 2}$, for some constant C. [Hint: Use the product rule to evaluate $\frac{d}{d t}\left[f(t) e^{-k t^{2} / 2}\right]$, and then apply Theorem II of Section 6.1.]
43. An airplane tire plant finds that its marginal cost of producing tires is $.04 x+\$ 150$ at a production level of x tires per day. If fixed costs are $\$ 500$ per day, find the cost of producing x tires per day.
44. If the marginal revenue function for a company is $400-3 x^{2}$, find the additional revenue received from doubling production if 10 units are currently being produced.
45. A drug is injected into a patient at the rate of $f(t) \mathrm{cu}-$ bic centimeters per minute at time t. What does the area under the graph of $y=f(t)$ from $t=0$ to $t=4$ represent?
46. A rock thrown straight up into the air has a velocity of $v(t)=-9.8 t+20$ meters per second after t seconds.
(a) Determine the distance the rock travels during the first 2 seconds.
(b) Represent the answer to part (a) as an area.
47. Use a Riemann sum with $n=4$ and left endpoints to estimate the area under the graph in Fig. 1 for $0 \leq x \leq 2$.

Figure 1
48. Redo Exercise 47 using right endpoints.
49. Use a Riemann sum with $n=2$ and midpoints to estimate the area under the graph of

$$
f(x)=\frac{1}{x+2}
$$

on the interval $0 \leq x \leq 2$. Then, use a definite integral to find the exact value of the area to five decimal places.
50. Use a Riemann sum with $n=5$ and midpoints to estimate the area under the graph of $f(x)=e^{2 x}$ on the interval $0 \leq x \leq 1$. Then, use a definite integral to find the exact value of the area to five decimal places.
51. Find the consumers' surplus for the demand curve $p=\sqrt{25-.04 x}$ at the sales level $x=400$.
52. Three thousand dollars is deposited in the bank at 4% interest compounded continuously. What will be the average value of the money in the account during the next 10 years?
53. Find the average value of $f(x)=1 / x^{3}$ from $x=\frac{1}{3}$ to $x=\frac{1}{2}$.
54. Suppose that the interval $0 \leq x \leq 1$ is divided into 100 subintervals with a width of $\Delta x=.01$. Show that the sum $\left[3 e^{-.01}\right] \Delta x+\left[3 e^{-.02}\right] \Delta x+\left[3 e^{-.03}\right] \Delta x+\cdots+\left[3 e^{-1}\right] \Delta x$ is close to $3\left(1-e^{-1}\right)$.
55. In Fig. 2, three regions are labeled with their areas. Determine $\int_{a}^{c} f(x) d x$ and determine $\int_{a}^{d} f(x) d x$.

Figure 2
56. Find the volume of the solid of revolution generated by revolving about the x-axis the region under the curve $y=1-x^{2}$ from $x=0$ to $x=1$.
57. A store has an inventory of Q units of a certain product at time $t=0$. The store sells the product at the steady rate of Q / A units per week and exhausts the inventory in A weeks.
(a) Find a formula $f(t)$ for the amount of product in inventory at time t
(b) Find the average inventory level during the period $0 \leq t \leq A$.
58. A retail store sells a certain product at the rate of $g(t)$ units per week at time t, where $g(t)=r t$. At time $t=0$, the store has Q units of the product in inventory.
(a) Find a formula $f(t)$ for the amount of product in inventory at time t.
(b) Determine the value of r in part (a) such that the inventory is exhausted in A weeks.
(c) Using $f(t)$, with r as in part (b), find the average inventory level during the period $0 \leq t \leq A$.
59. Let x be any positive number, and define $g(x)$ to be the number determined by the definite integral

$$
g(x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t
$$

(a) Give a geometric interpretation of the number $g(3)$.
(b) Find the derivative $g^{\prime}(x)$.
60. For each number x satisfying $-1 \leq x \leq 1$, define $h(x)$ by

$$
h(x)=\int_{-1}^{x} \sqrt{1-t^{2}} d t
$$

(a) Give a geometric interpretation of the values $h(0)$ and $h(1)$.
(b) Find the derivative $h^{\prime}(x)$.
61. Suppose that the interval $0 \leq t \leq 3$ is divided into 1000 subintervals of width Δt. Let $t_{1}, t_{2}, \ldots, t_{1000}$ denote the right endpoints of these subintervals. If we need to estimate the sum

$$
5000 e^{-.1 t_{1}} \Delta t+5000 e^{-.1 t_{2}} \Delta t+\cdots+5000 e^{-.1 t_{1000}} \Delta t
$$

show that this sum is close to 13,000 . [Note: A sum such as this would arise if we wanted to compute the present value of a continuous stream of income of $\$ 5000$ per year for 3 years, with interest compounded continuously at 10%.]
62. What number does

$$
\left[e^{0}+e^{1 / n}+e^{2 / n}+e^{3 / n}+\cdots+e^{(n-1) / n}\right] \cdot \frac{1}{n}
$$

approach as n gets very large?
63. What number does the sum

$$
\begin{aligned}
{\left[1^{3}+\left(1+\frac{1}{n}\right)^{3}+\left(1+\frac{2}{n}\right)^{3}+\right.} & \left(1+\frac{3}{n}\right)^{3} \\
& \left.+\cdots+\left(1+\frac{n-1}{n}\right)^{3}\right] \cdot \frac{1}{n}
\end{aligned}
$$

approach as n gets very large?
64. In Fig. 3, the rectangle has the same area as the region under the graph of $f(x)$. What is the average value of $f(x)$ on the interval $2 \leq x \leq 6$?

Figure 3
65. True or false: If $3 \leq f(x) \leq 4$ whenever $0 \leq x \leq 5$, then $3 \leq \frac{1}{5} \int_{0}^{5} f(x) d x \leq 4$.
66. Suppose that water is flowing into a tank at a rate of $r(t)$ gallons per hour, where the rate depends on the time t according to the formula

$$
r(t)=20-4 t, \quad 0 \leq t \leq 5
$$

(a) Consider a brief period of time, say from t_{1} to t_{2}. The length of this time period is $\Delta t=t_{2}-t_{1}$. During this period the rate of flow does not change much and is approximately $20-4 t_{1}$ (the rate at the beginning of the brief time interval). Approximately how much water flows into the tank during the time from t_{1} to t_{2} ?
(b) Explain why the total amount of water added to the tank during the time interval from $t=0$ to $t=5$ is given by $\int_{0}^{5} r(t) d t$.
67. The annual world rate of water use t years after 1960, for $t \leq 35$, was approximately $860 e^{.04 t}$ cubic kilometers per year. How much water was used between 1960 and $1995 ?$
68. If money is deposited steadily in a savings account at the rate of $\$ 4500$ per year, determine the balance at the end of 1 year if the account pays 9% interest compounded continuously.
69. Find a function $f(x)$ whose graph goes through the point $(1,1)$ and whose slope at any point $(x, f(x))$ is $3 x^{2}-2 x+1$.
70. For what value of a is the shaded area in Fig. 4 equal to 1 ?

Figure 4
71. Show that for any positive number b we have

$$
\int_{0}^{b^{2}} \sqrt{x} d x+\int_{0}^{b} x^{2} d x=b^{3}
$$

72. Generalize the result of Exercise 71 as follows: Let n be a positive integer. Show that for any positive number b we have

$$
\int_{0}^{b^{n}} \sqrt[n]{x} d x+\int_{0}^{b} x^{n} d x=b^{n+1}
$$

73. Show that

$$
\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\frac{1}{3}
$$

74. Generalize the result of Exercise 73 as follows: Let n be a positive integer. Show that

$$
\int_{0}^{1}\left(\sqrt[n]{x}-x^{n}\right) d x=\frac{n-1}{n+1}
$$

