KEY TERMS AND CONCEPTS

The *future value* of a continuous income stream of K dollars per year for N years at interest rate r compounded continuously is

$$\int_0^N K e^{r(N-t)} dt.$$

EXAMPLES

The average is given by

$$\frac{1}{20-10} \int_{10}^{20} \left[\frac{x^3}{200} - 8x + 150 \right] dx$$

= $\frac{1}{10} \left[\frac{x^4}{(4)(200)} - \frac{8}{2}x^2 + 150x \right] \Big|_{10}^{20}$
= $\frac{1}{10} \left[\frac{x^4}{800} - 4x^2 + 150x \right] \Big|_{10}^{20}$
= $\frac{1}{10} \left[\left[\frac{20^4}{800} - (4)(20)^2 + (150)(20) \right] - \left[\frac{10^4}{800} - (4)(10)^2 + (150)(10) \right] \right] = 48.75$

So, if the number of items varies between 10 and 20, the average price will be \$48.75.

Chapter 6 Fundamental Concept Check Exercises

- 1. What does it mean to antidifferentiate a function?
- 2. State the formula for $\int h(x)dx$ for each of the following functions.
 - (a) $h(x)x^r, r \neq -1$ (b) $h(x) = e^{kx}$

(c)
$$h(x) = \frac{1}{x}$$
 (d) $h(x) = f(x) + g(x)$

- (e) h(x) = kf(x)
- **3.** In the formula $\Delta x = \frac{b-a}{n}$, what do a, b, n, and Δx denote?
- 4. What is a Riemann sum?
- 5. Give an interpretation of the area under a rate of change function. Give a concrete example.

- 6. What is a definite integral?
- 7. What is the difference between a definite integral and an indefinite integral?
- ${\bf 8.}$ State the fundamental theorem of calculus.
- **9.** How is $F(x)\Big|_a^b$ calculated, and what is it called?
- 10. Outline a procedure for finding the area of a region bounded by two curves.
- 11. State the formula for each of the following quantities:(a) average value of a function
 - (b) consumers' surplus
 - (c) future value of an income stream
 - (d) volume of a solid of revolution

Chapter 6 Review Exercises

Calculate the following integrals.

1.
$$\int 3^2 dx$$

3. $\int \sqrt{x+1} dx$
5. $2 \int (x^3 + 3x^2 - 1) dx$
7. $\int e^{-x/2} dx$
2. $\int (x^2 - 3x + 2) dx$
4. $\int \frac{2}{x+4} dx$
6. $\int \sqrt[5]{x+3} dx$
8. $\int \frac{5}{\sqrt{x-7}} dx$

9.
$$\int (3x^4 - 4x^3) dx$$

10. $\int (2x+3)^7 dx$
11. $\int \sqrt{4-x} dx$
12. $\int \left(\frac{5}{x} - \frac{x}{5}\right) dx$
13. $\int_{-1}^{1} (x+1)^2 dx$
14. $\int_{0}^{1/8} \sqrt[3]{x} dx$
15. $\int_{-1}^{2} \sqrt{2x+4} dx$
16. $2\int_{0}^{1} \left(\frac{2}{x+1} - \frac{1}{x+4}\right) dx$

344 CHAPTER 6 The Definite Integral

17.
$$\int_{1}^{2} \frac{4}{x^{5}} dx$$
18.
$$\frac{2}{3} \int_{0}^{8} \sqrt{x+1} dx$$
19.
$$\int_{1}^{4} \frac{1}{x^{2}} dx$$
20.
$$\int_{3}^{6} e^{2-(x/3)} dx$$
21.
$$\int_{0}^{5} (5+3x)^{-1} dx$$
22.
$$\int_{-2}^{2} \frac{3}{2e^{3x}} dx$$
23.
$$\int_{0}^{\ln 2} (e^{x} - e^{-x}) dx$$
24.
$$\int_{\ln 2}^{\ln 3} (e^{x} + e^{-x}) dx$$
25.
$$\int_{0}^{\ln 3} \frac{e^{x} + e^{-x}}{e^{2x}} dx$$
26.
$$\int_{0}^{1} \frac{3 + e^{2x}}{e^{x}} dx$$

- **27.** Find the area under the curve $y = (3x 2)^{-3}$ from x = 1to x = 2.
- **28.** Find the area under the curve $y = 1 + \sqrt{x}$ from x = 1 to x = 9.

- **37.** Find the area of the region bounded by the curves $y = x^3 3x + 1$ and y = x + 1.
- **38.** Find the area of the region between the curves $y = 2x^2 + x$ and $y = x^2 + 2$ from x = 0 to x = 2.
- **39.** Find the function f(x) for which $f'(x) = (x 5)^2$, f(8) = 2.
- **40.** Find the function f(x) for which $f'(x) = e^{-5x}$, f(0) = 1.
- 41. Describe all solutions of the following differential equations, where y represents a function of t.
 (a) y' = 4t
 (b) y' = 4y
 (c) y' = e^{4t}
- **42.** Let k be a constant, and let y = f(t) be a function such that y' = kty. Show that $y = Ce^{kt^2/2}$, for some constant C. [*Hint:* Use the product rule to evaluate $\frac{d}{dt}[f(t)e^{-kt^2/2}]$, and then apply Theorem II of Section 6.1.]
- 43. An airplane tire plant finds that its marginal cost of producing tires is .04x + \$150 at a production level of x tires per day. If fixed costs are \$500 per day, find the cost of producing x tires per day.
- 44. If the marginal revenue function for a company is $400 3x^2$, find the additional revenue received from doubling production if 10 units are currently being produced.
- **45.** A drug is injected into a patient at the rate of f(t) cubic centimeters per minute at time t. What does the area under the graph of y = f(t) from t = 0 to t = 4 represent?
- **46.** A rock thrown straight up into the air has a velocity of v(t) = -9.8t + 20 meters per second after t seconds.
 - (a) Determine the distance the rock travels during the first 2 seconds.
 - (b) Represent the answer to part (a) as an area.
- **47.** Use a Riemann sum with n = 4 and left endpoints to estimate the area under the graph in Fig. 1 for $0 \le x \le 2$.

Figure 1

48. Redo Exercise 47 using right endpoints.

49. Use a Riemann sum with n = 2 and midpoints to estimate the area under the graph of

$$f(x) = \frac{1}{x+2}$$

on the interval $0 \le x \le 2$. Then, use a definite integral to find the exact value of the area to five decimal places.

- 50. Use a Riemann sum with n = 5 and midpoints to estimate the area under the graph of $f(x) = e^{2x}$ on the interval $0 \le x \le 1$. Then, use a definite integral to find the exact value of the area to five decimal places.
- **51.** Find the consumers' surplus for the demand curve $p = \sqrt{25 .04x}$ at the sales level x = 400.
- 52. Three thousand dollars is deposited in the bank at 4% interest compounded continuously. What will be the average value of the money in the account during the next 10 years?
- **53.** Find the average value of $f(x) = 1/x^3$ from $x = \frac{1}{3}$ to $x = \frac{1}{2}$.
- 54. Suppose that the interval $0 \le x \le 1$ is divided into 100 subintervals with a width of $\Delta x = .01$. Show that the sum

 $[3e^{-.01}]\Delta x + [3e^{-.02}]\Delta x + [3e^{-.03}]\Delta x + \dots + [3e^{-1}]\Delta x$ is close to $3(1 - e^{-1})$.

55. In Fig. 2, three regions are labeled with their areas. Determine $\int_a^c f(x) dx$ and determine $\int_a^d f(x) dx$.

- 56. Find the volume of the solid of revolution generated by revolving about the x-axis the region under the curve $y = 1 x^2$ from x = 0 to x = 1.
- 57. A store has an inventory of Q units of a certain product at time t = 0. The store sells the product at the steady rate of Q/A units per week and exhausts the inventory in A weeks.
 - (a) Find a formula f(t) for the amount of product in inventory at time t.
 - (b) Find the average inventory level during the period $0 \le t \le A$.

346 CHAPTER 6 The Definite Integral

- **58.** A retail store sells a certain product at the rate of g(t) units per week at time t, where g(t) = rt. At time t = 0, the store has Q units of the product in inventory.
 - (a) Find a formula f(t) for the amount of product in inventory at time t.
 - (b) Determine the value of r in part (a) such that the inventory is exhausted in A weeks.
 - (c) Using f(t), with r as in part (b), find the average inventory level during the period $0 \le t \le A$.
- 59. Let x be any positive number, and define g(x) to be the number determined by the definite integral

$$g(x) = \int_0^x \frac{1}{1+t^2} \, dt$$

- (a) Give a geometric interpretation of the number g(3).
- (b) Find the derivative g'(x).

60.

For each number x satisfying
$$-1 \le x \le 1$$
, define $h(x)$ by

$$h(x) = \int_{-1}^{x} \sqrt{1-t^2} dt.$$

- (a) Give a geometric interpretation of the values h(0) and h(1).
- (b) Find the derivative h'(x).
- **61.** Suppose that the interval $0 \le t \le 3$ is divided into 1000 subintervals of width Δt . Let $t_1, t_2, \ldots, t_{1000}$ denote the right endpoints of these subintervals. If we need to estimate the sum

 $5000e^{-.1t_1}\Delta t + 5000e^{-.1t_2}\Delta t + \dots + 5000e^{-.1t_{1000}}\Delta t,$

show that this sum is close to 13,000. [*Note:* A sum such as this would arise if we wanted to compute the present value of a continuous stream of income of \$5000 per year for 3 years, with interest compounded continuously at 10%.]

62. What number does

$$\left[e^{0} + e^{1/n} + e^{2/n} + e^{3/n} + \dots + e^{(n-1)/n}\right] \cdot \frac{1}{n}$$

approach as n gets very large?

63. What number does the sum

$$\left[1^{3} + \left(1 + \frac{1}{n}\right)^{3} + \left(1 + \frac{2}{n}\right)^{3} + \left(1 + \frac{3}{n}\right)^{3} + \dots + \left(1 + \frac{n-1}{n}\right)^{3}\right] \cdot \frac{1}{n}$$

approach as n gets very large?

64. In Fig. 3, the rectangle has the same area as the region under the graph of f(x). What is the average value of f(x) on the interval $2 \le x \le 6$?

65. True or false: If $3 \le f(x) \le 4$ whenever $0 \le x \le 5$, then $3 \le \frac{1}{5} \int_0^5 f(x) dx \le 4$.

66. Suppose that water is flowing into a tank at a rate of r(t) gallons per hour, where the rate depends on the time t according to the formula

$$r(t) = 20 - 4t, \qquad 0 \le t \le 5.$$

- (a) Consider a brief period of time, say from t_1 to t_2 . The length of this time period is $\Delta t = t_2 t_1$. During this period the rate of flow does not change much and is approximately $20 4t_1$ (the rate at the beginning of the brief time interval). Approximately how much water flows into the tank during the time from t_1 to t_2 ?
- (b) Explain why the total amount of water added to the tank during the time interval from t = 0 to t = 5 is given by $\int_0^5 r(t)dt$.
- 67. The annual world rate of water use t years after 1960, for $t \leq 35$, was approximately $860e^{.04t}$ cubic kilometers per year. How much water was used between 1960 and 1995?
- **68.** If money is deposited steadily in a savings account at the rate of \$4500 per year, determine the balance at the end of 1 year if the account pays 9% interest compounded continuously.
- **69.** Find a function f(x) whose graph goes through the point (1,1) and whose slope at any point (x, f(x)) is $3x^2 2x + 1$.
- **70.** For what value of a is the shaded area in Fig. 4 equal to 1?

71. Show that for any positive number b we have

$$\int_0^{b^2} \sqrt{x} \, dx + \int_0^b x^2 \, dx = b^3$$

72. Generalize the result of Exercise 71 as follows: Let n be a positive integer. Show that for any positive number b we have

$$\int_{0}^{b^{n}} \sqrt[n]{x} \, dx + \int_{0}^{b} x^{n} \, dx = b^{n+1}.$$

73. Show that

$$\int_0^1 (\sqrt{x} - x^2) dx = \frac{1}{3}.$$

74. Generalize the result of Exercise 73 as follows: Let n be a positive integer. Show that

$$\int_{0}^{1} (\sqrt[n]{x} - x^{n}) dx = \frac{n-1}{n+1}$$