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So p2 is already orthogonal to q1, and we can take q2 D p2. For the projection of p3

onto W2 D Span fq1; q2g, compute

hp3; q1i D
Z 1

0

12t2 � 1 dt D 4t3

ˇ̌
ˇ̌
1

0

D 4

hq1; q1i D
Z 1

0

1 � 1 dt D t

ˇ̌
ˇ̌
1

0

D 1

hp3; q2i D
Z 1

0

12t2.2t � 1/ dt D
Z 1

0

.24t3 � 12t2/ dt D 2

hq2; q2i D
Z 1

0

.2t � 1/2 dt D 1

6
.2t � 1/3

ˇ̌
ˇ̌
1

0

D 1

3

Then

projW2
p3 D hp3; q1i

hq1; q1i q1 C hp3; q2i
hq2; q2i

q2 D 4

1
q1 C 2

1=3
q2 D 4q1 C 6q2

and
q3 D p3 � projW2

p3 D p3 � 4q1 � 6q2

As a function, q3.t/ D 12t2 � 4 � 6.2t � 1/ D 12t2 � 12t C 2. The orthogonal basis
for the subspace W is fq1; q2; q3g.

PRACTICE PROBLEMS

Use the inner product axioms to verify the following statements.

1. hv; 0i D h0; vi D 0.

2. hu; vC wi D hu; vi C hu;wi.

6.7 EXERCISES
1. Let R2 have the inner product of Example 1, and let
x D .1; 1/ and y D .5; �1/.

a. Find kxk, kyk, and jhx; yij2.

b. Describe all vectors .´1; ´2/ that are orthogonal to y.

2. Let R2 have the inner product of Example 1. Show that
the Cauchy–Schwarz inequality holds for x D .3; �2/ and
y D .�2; 1/. [Suggestion: Study jhx; yij2.]

Exercises 3–8 refer to P2 with the inner product given by evalua-
tion at �1, 0, and 1. (See Example 2.)

3. Compute hp; qi, where p.t/ D 4 C t , q.t/ D 5 � 4t2.

4. Compute hp; qi, where p.t/ D 3t � t 2, q.t/ D 3 C 2t2.

5. Compute kpk and kqk, for p and q in Exercise 3.

6. Compute kpk and kqk, for p and q in Exercise 4.

7. Compute the orthogonal projection of q onto the subspace
spanned by p, for p and q in Exercise 3.

8. Compute the orthogonal projection of q onto the subspace
spanned by p, for p and q in Exercise 4.

9. Let P3 have the inner product given by evaluation at �3, �1,
1, and 3. Let p0.t/ D 1, p1.t/ D t , and p2.t/ D t 2.

a. Compute the orthogonal projection of p2 onto the sub-
space spanned by p0 and p1.

b. Find a polynomial q that is orthogonal to p0 and
p1, such that fp0; p1; qg is an orthogonal basis for
Span fp0; p1; p2g. Scale the polynomial q so that its vec-
tor of values at .�3; �1; 1; 3/ is .1; �1; �1; 1/.

10. Let P3 have the inner product as in Exercise 9, with p0; p1,
and q the polynomials described there. Find the best approx-
imation to p.t/ D t 3 by polynomials in Span fp0; p1; qg.

11. Let p0, p1, and p2 be the orthogonal polynomials described
in Example 5, where the inner product on P4 is given by eval-
uation at �2, �1, 0, 1, and 2. Find the orthogonal projection
of t 3 onto Span fp0; p1; p2g.

12. Find a polynomial p3 such that fp0; p1; p2; p3g (see Ex-
ercise 11) is an orthogonal basis for the subspace P3 of
P4. Scale the polynomial p3 so that its vector of values is
.�1; 2; 0; �2; 1/.
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13. Let A be any invertible n � n matrix. Show that for u, v in
Rn, the formula hu; vi D .Au/� .Av/ D .Au/T .Av/ defines
an inner product on Rn.

14. Let T be a one-to-one linear transformation from a vector
space V into Rn. Show that for u, v in V , the formula
hu; vi D T .u/�T .v/ defines an inner product on V .

Use the inner product axioms and other results of this section to
verify the statements in Exercises 15–18.

15. hu; cvi D chu; vi for all scalars c.

16. If fu; vg is an orthonormal set in V , then ku � vk D p
2.

17. hu; vi D 1
4
kuC vk2 � 1

4
ku � vk2.

18. kuC vk2 C ku � vk2 D 2kuk2 C 2kvk2.

19. Given a � 0 and b � 0, let u D
� p

ap
b

�
and v D

� p
bp
a

�
.

Use the Cauchy–Schwarz inequality to compare the geomet-
ric mean

p
ab with the arithmetic mean .a C b/=2.

20. Let u D
�

a

b

�
and v D

�
1

1

�
. Use the Cauchy–Schwarz in-

equality to show that

�
a C b

2

�2

� a2 C b2

2

Exercises 21–24 refer to V D C Œ0; 1�, with the inner product
given by an integral, as in Example 7.

21. Compute hf; gi, where f .t/ D 1 � 3t2 and g.t/ D t � t 3.

22. Compute hf; gi, where f .t/ D 5t � 3 and g.t/ D t 3 � t 2.

23. Compute kf k for f in Exercise 21.

24. Compute kgk for g in Exercise 22.

25. Let V be the space C Œ�1; 1� with the inner product of Ex-
ample 7. Find an orthogonal basis for the subspace spanned
by the polynomials 1, t , and t 2. The polynomials in this basis
are called Legendre polynomials.

26. Let V be the space C Œ�2; 2� with the inner product of Exam-
ple 7. Find an orthogonal basis for the subspace spanned by
the polynomials 1, t , and t 2.

27. [M] Let P4 have the inner product as in Example 5, and let
p0, p1, p2 be the orthogonal polynomials from that example.
Using your matrix program, apply the Gram–Schmidt proc-
ess to the set fp0; p1; p2; t 3; t 4g to create an orthogonal basis
for P4.

28. [M] Let V be the space C Œ0; 2�� with the inner prod-
uct of Example 7. Use the Gram–Schmidt process to
create an orthogonal basis for the subspace spanned by
f1; cos t; cos2 t; cos3 tg. Use a matrix program or computa-
tional program to compute the appropriate definite integrals.

SOLUTIONS TO PRACTICE PROBLEMS

1. By Axiom 1, hv; 0i D h0; vi. Then h0; vi D h0v; vi D 0hv; vi, by Axiom 3, so
h0; vi D 0.

2. By Axioms 1, 2, and then 1 again, hu; vC wi D hvC w; ui D hv; ui C hw; ui D
hu; vi C hu;wi.

6.8 APPLICATIONS OF INNER PRODUCT SPACES

The examples in this section suggest how the inner product spaces defined in Section 6.7
arise in practical problems. The first example is connected with the massive least-
squares problem of updating the North American Datum, described in the chapter’s
introductory example.

Weighted Least-Squares
Let y be a vector of n observations, y1; : : : ; yn, and suppose we wish to approximate y by
a vector Oy that belongs to some specified subspace of Rn. (In Section 6.5, Oy was written
as Ax so that Oy was in the column space of A.) Denote the entries in Oy by Oy1; : : : ; Oyn.
Then the sum of the squares for error, or SS(E), in approximating y by Oy is

SS(E) D .y1 � Oy1/2 C � � � C .yn � Oyn/2 (1)

This is simply ky � Oyk2, using the standard length in Rn.
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