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PRACTICE PROBLEMS
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and compute the associated least-squares error.

2. What can you say about the least-squares solution of Ax D b when b is orthogonal
to the columns of A?

6.5 EXERCISES
In Exercises 1–4, find a least-squares solution of Ax D b by
(a) constructing the normal equations for Ox and (b) solving for Ox.
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In Exercises 5 and 6, describe all least-squares solutions of the
equation Ax D b.
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7. Compute the least-squares error associated with the least-
squares solution found in Exercise 3.

8. Compute the least-squares error associated with the least-
squares solution found in Exercise 4.

In Exercises 9–12, find (a) the orthogonal projection of b onto
Col A and (b) a least-squares solution of Ax D b.
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. Compute Au and Av, and compare them with b.

Could u possibly be a least-squares solution of Ax D b?
(Answer this without computing a least-squares solution.)
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�
. Compute Au and Av, and compare them with b. Is

it possible that at least one of u or v could be a least-squares
solution of Ax D b? (Answer this without computing a least-
squares solution.)

In Exercises 15 and 16, use the factorization A D QR to find the
least-squares solution of Ax D b.
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In Exercises 17 and 18, A is an m � n matrix and b is in Rm. Mark
each statement True or False. Justify each answer.

17. a. The general least-squares problem is to find an x that
makes Ax as close as possible to b.
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b. A least-squares solution of Ax D b is a vector Ox that
satisfies AOx D Ob, where Ob is the orthogonal projection of
b onto Col A.

c. A least-squares solution of Ax D b is a vector Ox such that
kb � Axk � kb � AOxk for all x in Rn.

d. Any solution of ATAx D AT b is a least-squares solution
of Ax D b.

e. If the columns of A are linearly independent, then the
equation Ax D b has exactly one least-squares solution.

18. a. If b is in the column space of A, then every solution of
Ax D b is a least-squares solution.

b. The least-squares solution of Ax D b is the point in the
column space of A closest to b.

c. A least-squares solution of Ax D b is a list of weights
that, when applied to the columns of A, produces the
orthogonal projection of b onto Col A.

d. If Ox is a least-squares solution of Ax D b, then
Ox D .ATA/�1AT b.

e. The normal equations always provide a reliable method
for computing least-squares solutions.

f. If A has a QR factorization, say A D QR, then the best
way to find the least-squares solution of Ax D b is to
compute Ox D R�1QT b.

19. Let A be an m � n matrix. Use the steps below to show that a
vector x in Rn satisfies Ax D 0 if and only if ATAx D 0. This
will show that Nul A D Nul ATA.

a. Show that if Ax D 0, then ATAx D 0.

b. Suppose ATAx D 0. Explain why xTATAx D 0, and use
this to show that Ax D 0.

20. Let A be an m � n matrix such that ATA is invertible. Show
that the columns of A are linearly independent. [Careful:
You may not assume that A is invertible; it may not even be
square.]

21. Let A be an m � n matrix whose columns are linearly inde-
pendent. [Careful: A need not be square.]

a. Use Exercise 19 to show that ATA is an invertible matrix.

b. Explain why A must have at least as many rows as
columns.

c. Determine the rank of A.

22. Use Exercise 19 to show that rank ATA D rank A. [Hint:How
many columns does ATA have? How is this connected with
the rank of ATA?]

23. Suppose A is m � n with linearly independent columns and
b is in Rm. Use the normal equations to produce a formula
for Ob, the projection of b onto Col A. [Hint: Find Ox first. The
formula does not require an orthogonal basis for Col A.]

24. Find a formula for the least-squares solution of Ax D bwhen
the columns of A are orthonormal.

25. Describe all least-squares solutions of the system

x C y D 2

x C y D 4

26. [M] Example 3 in Section 4.8 displayed a low-pass linear
filter that changed a signal fykg into fykC1g and changed a
higher-frequency signal fwkg into the zero signal, where
yk D cos.�k=4/ and wk D cos.3�k=4/. The following cal-
culations will design a filter with approximately those prop-
erties. The filter equation is

a0ykC2 C a1ykC1 C a2yk D ´k for all k .8/

Because the signals are periodic, with period 8, it suffices
to study equation (8) for k D 0; : : : ; 7. The action on the
two signals described above translates into two sets of eight
equations, shown below:
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Write an equation Ax D b, where A is a 16 � 3 matrix formed
from the two coefficient matrices above and where b in R16 is
formed from the two right sides of the equations. Find a0, a1,
and a2 given by the least-squares solution of Ax D b. (The
.7 in the data above was used as an approximation for

p
2=2,

to illustrate how a typical computation in an applied problem
might proceed. If .707 were used instead, the resulting filter
coefficients would agree to at least seven decimal places
with

p
2=4; 1=2, and

p
2=4, the values produced by exact

arithmetic calculations.)
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