1. Let $A=\left[\begin{array}{rrr}1 & -3 & -3 \\ 1 & 5 & 1 \\ 1 & 7 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}5 \\ -3 \\ -5\end{array}\right]$. Find a least-squares solution of $A \mathbf{x}=\mathbf{b}$, and compute the associated least-squares error.
2. What can you say about the least-squares solution of $A \mathbf{x}=\mathbf{b}$ when \mathbf{b} is orthogonal to the columns of A ?

6.5 EXERCISES

In Exercises 1-4, find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ by (a) constructing the normal equations for $\hat{\mathbf{x}}$ and (b) solving for $\hat{\mathbf{x}}$.

1. $A=\left[\begin{array}{rr}-1 & 2 \\ 2 & -3 \\ -1 & 3\end{array}\right], \mathbf{b}=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$
2. $A=\left[\begin{array}{rr}2 & 1 \\ -2 & 0 \\ 2 & 3\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-5 \\ 8 \\ 1\end{array}\right]$
3. $A=\left[\begin{array}{rr}1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}3 \\ 1 \\ -4 \\ 2\end{array}\right]$
4. $A=\left[\begin{array}{rr}1 & 3 \\ 1 & -1 \\ 1 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$

In Exercises 5 and 6, describe all least-squares solutions of the equation $A \mathbf{x}=\mathbf{b}$.
5. $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 8 \\ 2\end{array}\right]$
6. $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}7 \\ 2 \\ 3 \\ 6 \\ 5 \\ 4\end{array}\right]$
7. Compute the least-squares error associated with the leastsquares solution found in Exercise 3.
8. Compute the least-squares error associated with the leastsquares solution found in Exercise 4.

In Exercises 9-12, find (a) the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$ and (b) a least-squares solution of $A \mathbf{x}=\mathbf{b}$.
9. $A=\left[\begin{array}{rr}1 & 5 \\ 3 & 1 \\ -2 & 4\end{array}\right], \mathbf{b}=\left[\begin{array}{r}4 \\ -2 \\ -3\end{array}\right]$
10. $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 4 \\ 1 & 2\end{array}\right], \mathbf{b}=\left[\begin{array}{r}3 \\ -1 \\ 5\end{array}\right]$
11. $A=\left[\begin{array}{rrr}4 & 0 & 1 \\ 1 & -5 & 1 \\ 6 & 1 & 0 \\ 1 & -1 & -5\end{array}\right], \mathbf{b}=\left[\begin{array}{l}9 \\ 0 \\ 0 \\ 0\end{array}\right]$
12. $A=\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}2 \\ 5 \\ 6 \\ 6\end{array}\right]$
13. Let $A=\left[\begin{array}{rr}3 & 4 \\ -2 & 1 \\ 3 & 4\end{array}\right], \mathbf{b}=\left[\begin{array}{r}11 \\ -9 \\ 5\end{array}\right], \mathbf{u}=\left[\begin{array}{r}5 \\ -1\end{array}\right]$, and $\mathbf{v}=$ $\left[\begin{array}{r}5 \\ -2\end{array}\right]$. Compute $A \mathbf{u}$ and $A \mathbf{v}$, and compare them with \mathbf{b}. Could \mathbf{u} possibly be a least-squares solution of $A \mathbf{x}=\mathbf{b}$? (Answer this without computing a least-squares solution.)
14. Let $A=\left[\begin{array}{rr}2 & 1 \\ -3 & -4 \\ 3 & 2\end{array}\right], \mathbf{b}=\left[\begin{array}{l}5 \\ 4 \\ 4\end{array}\right], \mathbf{u}=\left[\begin{array}{r}4 \\ -5\end{array}\right]$, and $\mathbf{v}=$ $\left[\begin{array}{r}6 \\ -5\end{array}\right]$. Compute $A \mathbf{u}$ and $A \mathbf{v}$, and compare them with \mathbf{b}. Is it possible that at least one of \mathbf{u} or \mathbf{v} could be a least-squares solution of $A \mathbf{x}=\mathbf{b}$? (Answer this without computing a leastsquares solution.)

In Exercises 15 and 16, use the factorization $A=Q R$ to find the least-squares solution of $A \mathbf{x}=\mathbf{b}$.
15. $A=\left[\begin{array}{ll}2 & 3 \\ 2 & 4 \\ 1 & 1\end{array}\right]=\left[\begin{array}{rr}2 / 3 & -1 / 3 \\ 2 / 3 & 2 / 3 \\ 1 / 3 & -2 / 3\end{array}\right]\left[\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]$
16. $A=\left[\begin{array}{rr}1 & -1 \\ 1 & 4 \\ 1 & -1 \\ 1 & 4\end{array}\right]=\left[\begin{array}{rr}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-1 \\ 6 \\ 5 \\ 7\end{array}\right]$

In Exercises 17 and $18, A$ is an $m \times n$ matrix and \mathbf{b} is in \mathbb{R}^{m}. Mark each statement True or False. Justify each answer.
17. a. The general least-squares problem is to find an \mathbf{x} that makes $A \mathbf{x}$ as close as possible to \mathbf{b}.
b. A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ that satisfies $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the orthogonal projection of b onto $\operatorname{Col} A$.
c. A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b}-A \mathbf{x}\| \leq\|\mathbf{b}-A \hat{\mathbf{x}}\|$ for all \mathbf{x} in \mathbb{R}^{n}.
d. Any solution of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$.
e. If the columns of A are linearly independent, then the equation $A \mathbf{x}=\mathbf{b}$ has exactly one least-squares solution.
18. a. If \mathbf{b} is in the column space of A, then every solution of $A \mathbf{x}=\mathbf{b}$ is a least-squares solution.
b. The least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the point in the column space of A closest to \mathbf{b}.
c. A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a list of weights that, when applied to the columns of A, produces the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$.
d. If $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$, then $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$.
e. The normal equations always provide a reliable method for computing least-squares solutions.
f. If A has a QR factorization, say $A=Q R$, then the best way to find the least-squares solution of $A \mathbf{x}=\mathbf{b}$ is to compute $\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}$.
19. Let A be an $m \times n$ matrix. Use the steps below to show that a vector \mathbf{x} in \mathbb{R}^{n} satisfies $A \mathbf{x}=\mathbf{0}$ if and only if $A^{T} A \mathbf{x}=\mathbf{0}$. This will show that $\operatorname{Nul} A=\operatorname{Nul} A^{T} A$.
a. Show that if $A \mathbf{x}=\mathbf{0}$, then $A^{T} A \mathbf{x}=\mathbf{0}$.
b. Suppose $A^{T} A \mathbf{x}=\mathbf{0}$. Explain why $\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{0}$, and use this to show that $A \mathbf{x}=\mathbf{0}$.
20. Let A be an $m \times n$ matrix such that $A^{T} A$ is invertible. Show that the columns of A are linearly independent. [Careful: You may not assume that A is invertible; it may not even be square.]
21. Let A be an $m \times n$ matrix whose columns are linearly independent. [Careful: A need not be square.]
a. Use Exercise 19 to show that $A^{T} A$ is an invertible matrix.
b. Explain why A must have at least as many rows as columns.
c. Determine the rank of A.
22. Use Exercise 19 to show that rank $A^{T} A=$ rank A. [Hint: How many columns does $A^{T} A$ have? How is this connected with the rank of $A^{T} A$?]
23. Suppose A is $m \times n$ with linearly independent columns and \mathbf{b} is in \mathbb{R}^{m}. Use the normal equations to produce a formula for $\hat{\mathbf{b}}$, the projection of \mathbf{b} onto $\operatorname{Col} A$. [Hint: Find $\hat{\mathbf{x}}$ first. The formula does not require an orthogonal basis for $\operatorname{Col} A$.]
24. Find a formula for the least-squares solution of $A \mathbf{x}=\mathbf{b}$ when the columns of A are orthonormal.
25. Describe all least-squares solutions of the system
$x+y=2$
$x+y=4$
26. [M] Example 3 in Section 4.8 displayed a low-pass linear filter that changed a signal $\left\{y_{k}\right\}$ into $\left\{y_{k+1}\right\}$ and changed a higher-frequency signal $\left\{w_{k}\right\}$ into the zero signal, where $y_{k}=\cos (\pi k / 4)$ and $w_{k}=\cos (3 \pi k / 4)$. The following calculations will design a filter with approximately those properties. The filter equation is
$a_{0} y_{k+2}+a_{1} y_{k+1}+a_{2} y_{k}=z_{k} \quad$ for all k
Because the signals are periodic, with period 8 , it suffices to study equation (8) for $k=0, \ldots, 7$. The action on the two signals described above translates into two sets of eight equations, shown below:

$$
\left.\begin{array}{c}
\begin{array}{c}
k=0 \\
k=1 \\
\vdots \\
y_{k+2}
\end{array} y_{k+1}
\end{array} \begin{array}{c}
y_{k} \\
0
\end{array} \begin{array}{rrr}
.7 & 1 \\
-.7 & 0 & .7 \\
-1 & -.7 & 0 \\
-.7 & -1 & -.7 \\
0 & -.7 & -1 \\
.7 & 0 & -.7 \\
1 & .7 & 0 \\
.7 & 1 & .7
\end{array}\right]\left[\begin{array}{l}
y_{k+1} \\
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{r}
.7 \\
0 \\
-.7 \\
-1 \\
-.7 \\
0 \\
.7 \\
1
\end{array}\right]
$$

Write an equation $A \mathbf{x}=\mathbf{b}$, where A is a 16×3 matrix formed from the two coefficient matrices above and where \mathbf{b} in \mathbb{R}^{16} is formed from the two right sides of the equations. Find a_{0}, a_{1}, and a_{2} given by the least-squares solution of $A \mathbf{x}=\mathbf{b}$. (The .7 in the data above was used as an approximation for $\sqrt{2} / 2$, to illustrate how a typical computation in an applied problem might proceed. If .707 were used instead, the resulting filter coefficients would agree to at least seven decimal places with $\sqrt{2} / 4,1 / 2$, and $\sqrt{2} / 4$, the values produced by exact arithmetic calculations.)

