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By construction, the first k columns of Q are an orthonormal basis of Span fx1; : : : ; xkg.
From the proof of Theorem 12, A D QR for some R. To find R, observe that QTQ D I ,
because the columns of Q are orthonormal. Hence

QTA D QT .QR/ D IR D R

and
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NUMER ICAL NOTES

1. When the Gram–Schmidt process is run on a computer, roundoff error can
build up as the vectors uk are calculated, one by one. For j and k large but
unequal, the inner products uT

j uk may not be sufficiently close to zero. This
loss of orthogonality can be reduced substantially by rearranging the order
of the calculations.1 However, a different computer-based QR factorization is
usually preferred to this modified Gram–Schmidt method because it yields a
more accurate orthonormal basis, even though the factorization requires about
twice as much arithmetic.

2. To produce a QR factorization of a matrix A, a computer program usually
left-multiplies A by a sequence of orthogonal matrices until A is transformed
into an upper triangular matrix. This construction is analogous to the left-
multiplication by elementary matrices that produces an LU factorization of A.

PRACTICE PROBLEMS

1. Let W D Span fx1; x2g, where x1 D
2
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5. Construct an or-

thonormal basis for W .

2. Suppose A D QR, where Q is an m � n matrix with orthogonal columns and R is
an n � n matrix. Show that if the columns of A are linearly dependent, then R cannot
be invertible.

6.4 EXERCISES
In Exercises 1–6, the given set is a basis for a subspace W . Use
the Gram–Schmidt process to produce an orthogonal basis for W .
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1 See Fundamentals of Matrix Computations, by David S. Watkins (New York: John Wiley & Sons, 1991),
pp. 167–180.
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7. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 3.

8. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 4.

Find an orthogonal basis for the column space of each matrix in
Exercises 9–12.
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In Exercises 13 and 14, the columns of Q were obtained by
applying the Gram–Schmidt process to the columns of A. Find an
upper triangular matrix R such that A D QR. Check your work.
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15. Find a QR factorization of the matrix in Exercise 11.

16. Find a QR factorization of the matrix in Exercise 12.

In Exercises 17 and 18, all vectors and subspaces are in Rn. Mark
each statement True or False. Justify each answer.

17. a. If fv1; v2; v3g is an orthogonal basis for W , then mul-
tiplying v3 by a scalar c gives a new orthogonal basis
fv1; v2; cv3g.

b. The Gram–Schmidt process produces from a linearly in-
dependent set fx1; : : : ; xpg an orthogonal set fv1; : : : ; vpg
with the property that for each k, the vectors v1; : : : ; vk

span the same subspace as that spanned by x1; : : : ; xk .

c. If A D QR, where Q has orthonormal columns, then
R D QTA.

18. a. If W D Span fx1; x2; x3g with fx1; x2; x3g linearly inde-
pendent, and if fv1; v2; v3g is an orthogonal set in W , then
fv1; v2; v3g is a basis for W .

b. If x is not in a subspace W , then x � projW x is not zero.

c. In a QR factorization, say A D QR (when A has lin-
early independent columns), the columns of Q form an
orthonormal basis for the column space of A.

19. Suppose A D QR, where Q is m � n and R is n � n. Show
that if the columns of A are linearly independent, then R must
be invertible. [Hint: Study the equation Rx D 0 and use the
fact that A D QR.]

20. Suppose A D QR, where R is an invertible matrix. Show
that A and Q have the same column space. [Hint: Given y in
Col A, show that y D Qx for some x. Also, given y in Col Q,
show that y D Ax for some x.]

21. Given A D QR as in Theorem 12, describe how to find an
orthogonal m � m (square) matrix Q1 and an invertible n � n

upper triangular matrix R such that

A D Q1

�
R

0

�

The MATLAB qr command supplies this “full” QR factor-
ization when rank A D n.

22. Let u1; : : : ; up be an orthogonal basis for a subspace W of
Rn, and let T W Rn ! Rn be defined by T .x/ D projW x.
Show that T is a linear transformation.

23. Suppose A D QR is a QR factorization of an m � n ma-
trix A (with linearly independent columns). Partition A as
ŒA1 A2�, where A1 has p columns. Show how to obtain a
QR factorization of A1, and explain why your factorization
has the appropriate properties.

24. [M] Use the Gram–Schmidt process as in Example 2 to
produce an orthogonal basis for the column space of
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25. [M] Use the method in this section to produce a QR factor-
ization of the matrix in Exercise 24.

26. [M] For a matrix program, the Gram–Schmidt process works
better with orthonormal vectors. Starting with x1; : : : ; xp as
in Theorem 11, let A D Œ x1 � � � xp �. Suppose Q is an
n � k matrix whose columns form an orthonormal basis for
the subspace Wk spanned by the first k columns of A. Then
for x in Rn, QQT x is the orthogonal projection of x onto Wk

(Theorem 10 in Section 6.3). If xkC1 is the next column of A,
then equation (2) in the proof of Theorem 11 becomes

vkC1 D xkC1 � Q.QT xkC1/

(The parentheses above reduce the number of arithmetic
operations.) Let ukC1 D vkC1=kvkC1k. The new Q for the
next step is Œ Q ukC1 �. Use this procedure to compute the
QR factorization of the matrix in Exercise 24. Write the
keystrokes or commands you use.
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