SOLUTION

$$
\begin{aligned}
U \mathbf{x} & =\left[\begin{array}{cr}
1 / \sqrt{2} & 2 / 3 \\
1 / \sqrt{2} & -2 / 3 \\
0 & 1 / 3
\end{array}\right]\left[\begin{array}{r}
\sqrt{2} \\
3
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right] \\
\|U \mathbf{x}\| & =\sqrt{9+1+1}=\sqrt{11} \\
\|\mathbf{x}\| & =\sqrt{2+9}=\sqrt{11}
\end{aligned}
$$

Theorems 6 and 7 are particularly useful when applied to square matrices. An orthogonal matrix is a square invertible matrix U such that $U^{-1}=U^{T}$. By Theorem 6 , such a matrix has orthonormal columns. ${ }^{1}$ It is easy to see that any square matrix with orthonormal columns is an orthogonal matrix. Surprisingly, such a matrix must have orthonormal rows, too. See Exercises 27 and 28. Orthogonal matrices will appear frequently in Chapter 7.

EXAMPLE 7 The matrix

$$
U=\left[\begin{array}{rrr}
3 / \sqrt{11} & -1 / \sqrt{6} & -1 / \sqrt{66} \\
1 / \sqrt{11} & 2 / \sqrt{6} & -4 / \sqrt{66} \\
1 / \sqrt{11} & 1 / \sqrt{6} & 7 / \sqrt{66}
\end{array}\right]
$$

is an orthogonal matrix because it is square and because its columns are orthonormal, by Example 5. Verify that the rows are orthonormal, too!

PRACTICE PROBLEMS

1. Let $\mathbf{u}_{1}=\left[\begin{array}{r}-1 / \sqrt{5} \\ 2 / \sqrt{5}\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}2 / \sqrt{5} \\ 1 / \sqrt{5}\end{array}\right]$. Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthonormal basis for \mathbb{R}^{2}.
2. Let \mathbf{y} and L be as in Example 3 and Figure 3. Compute the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto L using $\mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ instead of the \mathbf{u} in Example 3.
3. Let U and \mathbf{x} be as in Example 6, and let $\mathbf{y}=\left[\begin{array}{c}-3 \sqrt{2} \\ 6\end{array}\right]$. Verify that $U \mathbf{x} \cdot U \mathbf{y}=\mathbf{x} \cdot \mathbf{y}$.
4. Let U be an $n \times n$ matrix with orthonormal columns. Show that $\operatorname{det} U= \pm 1$.

6.2 EXERCISES

In Exercises 1-6, determine which sets of vectors are orthogonal.

1. $\left[\begin{array}{r}-1 \\ 4 \\ -3\end{array}\right],\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ -4 \\ -7\end{array}\right]$
2. $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-5 \\ -2 \\ 1\end{array}\right]$
3. $\left[\begin{array}{r}2 \\ -7 \\ -1\end{array}\right],\left[\begin{array}{r}-6 \\ -3 \\ 9\end{array}\right],\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right]$
4. $\left[\begin{array}{r}2 \\ -5 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}4 \\ -2 \\ 6\end{array}\right]$
5. $\left[\begin{array}{r}3 \\ -2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{r}-1 \\ 3 \\ -3 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 8 \\ 7 \\ 0\end{array}\right]$
6. $\left[\begin{array}{r}5 \\ -4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}-4 \\ 1 \\ -3 \\ 8\end{array}\right],\left[\begin{array}{r}3 \\ 3 \\ 5 \\ -1\end{array}\right]$

In Exercises 7-10, show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ or $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{2} or \mathbb{R}^{3}, respectively. Then express \mathbf{x} as a linear combination of the \mathbf{u} 's.
7. $\mathbf{u}_{1}=\left[\begin{array}{r}2 \\ -3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}6 \\ 4\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{r}9 \\ -7\end{array}\right]$

[^0]8. $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 6\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{r}-6 \\ 3\end{array}\right]$
9. $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-1 \\ 4 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{r}8 \\ -4 \\ -3\end{array}\right]$
10. $\mathbf{u}_{1}=\left[\begin{array}{r}3 \\ -3 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{r}5 \\ -3 \\ 1\end{array}\right]$
11. Compute the orthogonal projection of $\left[\begin{array}{l}1 \\ 7\end{array}\right]$ onto the line through $\left[\begin{array}{r}-4 \\ 2\end{array}\right]$ and the origin.
12. Compute the orthogonal projection of $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ onto the line through $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ and the origin.
13. Let $\mathbf{y}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{r}4 \\ -7\end{array}\right]$. Write \mathbf{y} as the sum of two orthogonal vectors, one in $\operatorname{Span}\{\mathbf{u}\}$ and one orthogonal to \mathbf{u}.
14. Let $\mathbf{y}=\left[\begin{array}{l}2 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}7 \\ 1\end{array}\right]$. Write \mathbf{y} as the sum of a vector in Span $\{\mathbf{u}\}$ and a vector orthogonal to \mathbf{u}.
15. Let $\mathbf{y}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}8 \\ 6\end{array}\right]$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.
16. Let $\mathbf{y}=\left[\begin{array}{r}-3 \\ 9\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

In Exercises 17-22, determine which sets of vectors are orthonormal . If a set is only orthogonal, normalize the vectors to produce an orthonormal set.
17. $\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right],\left[\begin{array}{c}-1 / 2 \\ 0 \\ 1 / 2\end{array}\right]$
18. $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ 0\end{array}\right]$
19. $\left[\begin{array}{r}-.6 \\ .8\end{array}\right],\left[\begin{array}{l}.8 \\ .6\end{array}\right]$
20. $\left[\begin{array}{r}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right],\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ 0\end{array}\right]$
21. $\left[\begin{array}{l}1 / \sqrt{10} \\ 3 / \sqrt{20} \\ 3 / \sqrt{20}\end{array}\right],\left[\begin{array}{c}3 / \sqrt{10} \\ -1 / \sqrt{20} \\ -1 / \sqrt{20}\end{array}\right],\left[\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
22. $\left[\begin{array}{c}1 / \sqrt{18} \\ 4 / \sqrt{18} \\ 1 / \sqrt{18}\end{array}\right],\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right],\left[\begin{array}{r}-2 / 3 \\ 1 / 3 \\ -2 / 3\end{array}\right]$

In Exercises 23 and 24, all vectors are in \mathbb{R}^{n}. Mark each statement True or False. Justify each answer.
23. a. Not every linearly independent set in \mathbb{R}^{n} is an orthogonal set.
b. If \mathbf{y} is a linear combination of nonzero vectors from an orthogonal set, then the weights in the linear combination can be computed without row operations on a matrix.
c. If the vectors in an orthogonal set of nonzero vectors are normalized, then some of the new vectors may not be orthogonal.
d. A matrix with orthonormal columns is an orthogonal matrix.
e. If L is a line through $\mathbf{0}$ and if $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L.
24. a. Not every orthogonal set in \mathbb{R}^{n} is linearly independent.
b. If a set $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ has the property that $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0$ whenever $i \neq j$, then S is an orthonormal set.
c. If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A \mathbf{x}$ preserves lengths.
d. The orthogonal projection of \mathbf{y} onto \mathbf{v} is the same as the orthogonal projection of \mathbf{y} onto $c \mathbf{v}$ whenever $c \neq 0$.
e. An orthogonal matrix is invertible.
25. Prove Theorem 7. [Hint: For (a), compute $\|U \mathbf{x}\|^{2}$, or prove (b) first.]
26. Suppose W is a subspace of \mathbb{R}^{n} spanned by n nonzero orthogonal vectors. Explain why $W=\mathbb{R}^{n}$.
27. Let U be a square matrix with orthonormal columns. Explain why U is invertible. (Mention the theorems you use.)
28. Let U be an $n \times n$ orthogonal matrix. Show that the rows of U form an orthonormal basis of \mathbb{R}^{n}.
29. Let U and V be $n \times n$ orthogonal matrices. Explain why $U V$ is an orthogonal matrix. [That is, explain why $U V$ is invertible and its inverse is $(U V)^{T}$.]
30. Let U be an orthogonal matrix, and construct V by interchanging some of the columns of U. Explain why V is an orthogonal matrix.
31. Show that the orthogonal projection of a vector \mathbf{y} onto a line L through the origin in \mathbb{R}^{2} does not depend on the choice of the nonzero \mathbf{u} in L used in the formula for $\hat{\mathbf{y}}$. To do this, suppose \mathbf{y} and \mathbf{u} are given and $\hat{\mathbf{y}}$ has been computed by formula (2) in this section. Replace \mathbf{u} in that formula by $c \mathbf{u}$, where c is an unspecified nonzero scalar. Show that the new formula gives the same $\hat{\mathbf{y}}$.
32. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be an orthogonal set of nonzero vectors, and let c_{1}, c_{2} be any nonzero scalars. Show that $\left\{c_{1} \mathbf{v}_{1}, c_{2} \mathbf{v}_{2}\right\}$ is also an orthogonal set. Since orthogonality of a set is defined in terms of pairs of vectors, this shows that if the vectors in an orthogonal set are normalized, the new set will still be orthogonal.
33. Given $\mathbf{u} \neq \mathbf{0}$ in \mathbb{R}^{n}, let $L=\operatorname{Span}\{\mathbf{u}\}$. Show that the mapping $\mathbf{x} \mapsto \operatorname{proj}_{L} \mathbf{x}$ is a linear transformation.
34. Given $\mathbf{u} \neq \mathbf{0}$ in \mathbb{R}^{n}, let $L=\operatorname{Span}\{\mathbf{u}\}$. For \mathbf{y} in \mathbb{R}^{n}, the reflection of \mathbf{y} in L is the point $\operatorname{refl}_{L} \mathbf{y}$ defined by
$\operatorname{refl}_{L} \mathbf{y}=2 \cdot \operatorname{proj}_{L} \mathbf{y}-\mathbf{y}$
See the figure, which shows that $\operatorname{refl}_{L} \mathbf{y}$ is the sum of $\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}$ and $\hat{\mathbf{y}}-\mathbf{y}$. Show that the mapping $\mathbf{y} \mapsto \operatorname{refl}_{L} \mathbf{y}$ is a linear transformation.

The reflection of \mathbf{y} in a line through the origin.
35. [M] Show that the columns of the matrix A are orthogonal by making an appropriate matrix calculation. State the calculation you use.

$$
A=\left[\begin{array}{rrrr}
-6 & -3 & 6 & 1 \\
-1 & 2 & 1 & -6 \\
3 & 6 & 3 & -2 \\
6 & -3 & 6 & -1 \\
2 & -1 & 2 & 3 \\
-3 & 6 & 3 & 2 \\
-2 & -1 & 2 & -3 \\
1 & 2 & 1 & 6
\end{array}\right]
$$

36. [M] In parts (a)-(d), let U be the matrix formed by normalizing each column of the matrix A in Exercise 35.
a. Compute $U^{T} U$ and $U U^{T}$. How do they differ?
b. Generate a random vector \mathbf{y} in \mathbb{R}^{8}, and compute $\mathbf{p}=U U^{T} \mathbf{y}$ and $\mathbf{z}=\mathbf{y}-\mathbf{p}$. Explain why \mathbf{p} is in $\operatorname{Col} A$. Verify that \mathbf{z} is orthogonal to \mathbf{p}.
c. Verify that \mathbf{z} is orthogonal to each column of U.
d. Notice that $\mathbf{y}=\mathbf{p}+\mathbf{z}$, with \mathbf{p} in $\operatorname{Col} A$. Explain why \mathbf{z} is in $(\operatorname{Col} A)^{\perp}$. (The significance of this decomposition of \mathbf{y} will be explained in the next section.)

SOLUTIONS TO PRACTICE PROBLEMS

1. The vectors are orthogonal because

$$
\mathbf{u}_{1} \cdot \mathbf{u}_{2}=-2 / 5+2 / 5=0
$$

They are unit vectors because

$$
\begin{aligned}
& \left\|\mathbf{u}_{1}\right\|^{2}=(-1 / \sqrt{5})^{2}+(2 / \sqrt{5})^{2}=1 / 5+4 / 5=1 \\
& \left\|\mathbf{u}_{2}\right\|^{2}=(2 / \sqrt{5})^{2}+(1 / \sqrt{5})^{2}=4 / 5+1 / 5=1
\end{aligned}
$$

In particular, the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is linearly independent, and hence is a basis for \mathbb{R}^{2} since there are two vectors in the set.
2. When $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$,

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{20}{5}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=4\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]
$$

This is the same $\hat{\mathbf{y}}$ found in Example 3. The orthogonal projection does not seem to depend on the \mathbf{u} chosen on the line. See Exercise 31.
3. $U \mathbf{y}=\left[\begin{array}{cc}1 / \sqrt{2} & 2 / 3 \\ 1 / \sqrt{2} & -2 / 3 \\ 0 & 1 / 3\end{array}\right]\left[\begin{array}{c}-3 \sqrt{2} \\ 6\end{array}\right]=\left[\begin{array}{r}1 \\ -7 \\ 2\end{array}\right]$

$$
\begin{aligned}
& \text { Also, from Example } 6, \mathbf{x}=\left[\begin{array}{c}
\sqrt{2} \\
3
\end{array}\right] \text { and } U \mathbf{x}=\left[\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right] \text {. Hence } \\
& \qquad U \mathbf{x} \cdot U \mathbf{y}=3+7+2=12, \quad \text { and } \quad \mathbf{x} \cdot \mathbf{y}=-6+18=12
\end{aligned}
$$

4. Since U is an $n \times n$ matrix with orthonormal columns, by Theorem $6, U^{T} U=I$. Taking the determinant of the left side of this equation, and applying Theorems 5 and 6 from Section 3.2 results in $\operatorname{det} U^{T} U=\left(\operatorname{det} U^{T}\right)(\operatorname{det} U)=(\operatorname{det} U)(\operatorname{det} U)=$ $(\operatorname{det} U)^{2}$. Recall det $I=1$. Putting the two sides of the equation back together results in $(\operatorname{det} U)^{2}=1$ and hence $\operatorname{det} U= \pm 1$.

[^0]: ${ }^{1}$ A better name might be orthonormal matrix, and this term is found in some statistics texts. However, orthogonal matrix is the standard term in linear algebra.

