which can be rearranged to produce

$$
\begin{aligned}
\|\mathbf{u}\|\|\mathbf{v}\| \cos \vartheta & =\frac{1}{2}\left[\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}\right] \\
& =\frac{1}{2}\left[u_{1}^{2}+u_{2}^{2}+v_{1}^{2}+v_{2}^{2}-\left(u_{1}-v_{1}\right)^{2}-\left(u_{2}-v_{2}\right)^{2}\right] \\
& =u_{1} v_{1}+u_{2} v_{2} \\
& =\mathbf{u} \cdot \mathbf{v}
\end{aligned}
$$

The verification for \mathbb{R}^{3} is similar. When $n>3$, formula (2) may be used to define the angle between two vectors in \mathbb{R}^{n}. In statistics, for instance, the value of $\cos \vartheta$ defined by (2) for suitable vectors \mathbf{u} and \mathbf{v} is what statisticians call a correlation coefficient.

PRACTICE PROBLEMS

1. Let $\mathbf{a}=\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}-3 \\ 1\end{array}\right]$. Compute $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$ and $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$.
2. Let $\mathbf{c}=\left[\begin{array}{c}4 / 3 \\ -1 \\ 2 / 3\end{array}\right]$ and $\mathbf{d}=\left[\begin{array}{r}5 \\ 6 \\ -1\end{array}\right]$.
a. Find a unit vector \mathbf{u} in the direction of \mathbf{c}.
b. Show that \mathbf{d} is orthogonal to \mathbf{c}.
c. Use the results of (a) and (b) to explain why \mathbf{d} must be orthogonal to the unit vector \mathbf{u}.
3. Let W be a subspace of R^{n}. Exercise 30 establishes that W^{\perp} is also a subspace of R^{n}. Prove that $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$.

6.1 EXERCISES

Compute the quantities in Exercises $1-8$ using the vectors

$$
\mathbf{u}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
4 \\
6
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
3 \\
-1 \\
-5
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{r}
6 \\
-2 \\
3
\end{array}\right]
$$

1. $\mathbf{u} \cdot \mathbf{u}, \mathbf{v} \cdot \mathbf{u}$, and $\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$
2. $\mathbf{w} \cdot \mathbf{w}, \mathbf{x} \cdot \mathbf{w}$, and $\frac{\mathbf{X} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$
3. $\frac{1}{w \cdot w} \mathbf{w}$
4. $\frac{1}{u \cdot u} \mathbf{u}$
5. $\left(\frac{u \cdot v}{v \cdot v}\right) v$
6. $\left(\frac{x \cdot w}{X \cdot x}\right) \mathbf{x}$
7. $\|w\|$
8. $\|x\|$

In Exercises 9-12, find a unit vector in the direction of the given vector.
9. $\left[\begin{array}{r}-30 \\ 40\end{array}\right]$
10. $\left[\begin{array}{r}-6 \\ 4 \\ -3\end{array}\right]$
11. $\left[\begin{array}{c}7 / 4 \\ 1 / 2 \\ 1\end{array}\right]$
12. $\left[\begin{array}{c}8 / 3 \\ 2\end{array}\right]$
13. Find the distance between $\mathbf{x}=\left[\begin{array}{r}10 \\ -3\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}-1 \\ -5\end{array}\right]$.
14. Find the distance between $\mathbf{u}=\left[\begin{array}{r}0 \\ -5 \\ 2\end{array}\right]$ and $\mathbf{z}=\left[\begin{array}{r}-4 \\ -1 \\ 8\end{array}\right]$.

Determine which pairs of vectors in Exercises 15-18 are orthogonal.
15. $\mathbf{a}=\left[\begin{array}{r}8 \\ -5\end{array}\right], \mathbf{b}=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$
16. $\mathbf{u}=\left[\begin{array}{r}12 \\ 3 \\ -5\end{array}\right], \mathbf{v}=\left[\begin{array}{r}2 \\ -3 \\ 3\end{array}\right]$
17. $\mathbf{u}=\left[\begin{array}{r}3 \\ 2 \\ -5 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-4 \\ 1 \\ -2 \\ 6\end{array}\right]$
18. $\mathbf{y}=\left[\begin{array}{r}-3 \\ 7 \\ 4 \\ 0\end{array}\right], \mathbf{z}=\left[\begin{array}{r}1 \\ -8 \\ 15 \\ -7\end{array}\right]$

In Exercises 19 and 20, all vectors are in \mathbb{R}^{n}. Mark each statement True or False. Justify each answer.
19. a. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$.
b. For any scalar $c, \mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$.
c. If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to $-\mathbf{v}$, then \mathbf{u} and \mathbf{v} are orthogonal.
d. For a square matrix A, vectors in $\operatorname{Col} A$ are orthogonal to vectors in $\mathrm{Nul} A$.
e. If vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_{j} for $j=1, \ldots, p$, then \mathbf{x} is in W^{\perp}.
20. a. $\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}=0$.
b. For any scalar $c,\|c \mathbf{v}\|=c\|\mathbf{v}\|$.
c. If \mathbf{x} is orthogonal to every vector in a subspace W, then \mathbf{x} is in W^{\perp}.
d. If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
e. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
21. Use the transpose definition of the inner product to verify parts (b) and (c) of Theorem 1. Mention the appropriate facts from Chapter 2.
22. Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$. Explain why $\mathbf{u} \cdot \mathbf{u} \geq 0$. When is $\mathbf{u} \cdot \mathbf{u}=0$?
23. Let $\mathbf{u}=\left[\begin{array}{r}2 \\ -5 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}-7 \\ -4 \\ 6\end{array}\right]$. Compute and compare $\mathbf{u} \cdot \mathbf{v},\|\mathbf{u}\|^{2},\|\mathbf{v}\|^{2}$, and $\|\mathbf{u}+\mathbf{v}\|^{2}$. Do not use the Pythagorean Theorem.
24. Verify the parallelogram law for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} :
$\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}$
25. Let $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$. Describe the set H of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ that are orthogonal to \mathbf{v}. [Hint: Consider $\mathbf{v}=\mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$.]
26. Let $\mathbf{u}=\left[\begin{array}{r}5 \\ -6 \\ 7\end{array}\right]$, and let W be the set of all \mathbf{x} in \mathbb{R}^{3} such that $\mathbf{u} \cdot \mathbf{x}=0$. What theorem in Chapter 4 can be used to show that W is a subspace of \mathbb{R}^{3} ? Describe W in geometric language.
27. Suppose a vector \mathbf{y} is orthogonal to vectors \mathbf{u} and \mathbf{v}. Show that \mathbf{y} is orthogonal to the vector $\mathbf{u}+\mathbf{v}$.
28. Suppose \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v}. Show that \mathbf{y} is orthogonal to every \mathbf{w} in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$. [Hint: An arbitrary \mathbf{w} in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ has the form $\mathbf{w}=c_{1} \mathbf{u}+c_{2} \mathbf{v}$. Show that \mathbf{y} is orthogonal to such a vector \mathbf{w}.]

29. Let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Show that if \mathbf{x} is orthogonal to each \mathbf{v}_{j}, for $1 \leq j \leq p$, then \mathbf{x} is orthogonal to every vector in W.
30. Let W be a subspace of \mathbb{R}^{n}, and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^{n} using the following steps.
a. Take \mathbf{z} in W^{\perp}, and let \mathbf{u} represent any element of W. Then $\mathbf{z} \cdot \mathbf{u}=0$. Take any scalar c and show that $c \mathbf{z}$ is orthogonal to \mathbf{u}. (Since \mathbf{u} was an arbitrary element of W, this will show that $c \mathbf{z}$ is in W^{\perp}.)
b. Take \mathbf{z}_{1} and \mathbf{z}_{2} in W^{\perp}, and let \mathbf{u} be any element of W. Show that $\mathbf{z}_{1}+\mathbf{z}_{2}$ is orthogonal to \mathbf{u}. What can you conclude about $\mathbf{z}_{1}+\mathbf{z}_{2}$? Why?
c. Finish the proof that W^{\perp} is a subspace of \mathbb{R}^{n}.
31. Show that if \mathbf{x} is in both W and W^{\perp}, then $\mathbf{x}=\mathbf{0}$.
32. [M] Construct a pair \mathbf{u}, \mathbf{v} of random vectors in \mathbb{R}^{4}, and let
$A=\left[\begin{array}{rrrr}.5 & .5 & .5 & .5 \\ .5 & .5 & -.5 & -.5 \\ .5 & -.5 & .5 & -.5 \\ .5 & -.5 & -.5 & .5\end{array}\right]$
a. Denote the columns of A by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{4}$. Compute the length of each column, and compute $\mathbf{a}_{1} \cdot \mathbf{a}_{2}$, $\mathbf{a}_{1} \cdot \mathbf{a}_{3}, \mathbf{a}_{1} \cdot \mathbf{a}_{4}, \mathbf{a}_{2} \cdot \mathbf{a}_{3}, \mathbf{a}_{2} \cdot \mathbf{a}_{4}$, and $\mathbf{a}_{3} \cdot \mathbf{a}_{4}$.
b. Compute and compare the lengths of $\mathbf{u}, A \mathbf{u}, \mathbf{v}$, and $A \mathbf{v}$.
c. Use equation (2) in this section to compute the cosine of the angle between \mathbf{u} and \mathbf{v}. Compare this with the cosine of the angle between $A \mathbf{u}$ and $A \mathbf{v}$.
d. Repeat parts (b) and (c) for two other pairs of random vectors. What do you conjecture about the effect of A on vectors?
33. [M] Generate random vectors \mathbf{x}, \mathbf{y}, and \mathbf{v} in \mathbb{R}^{4} with integer entries (and $\mathbf{v} \neq \mathbf{0}$), and compute the quantities
$\left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v},\left(\frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}, \frac{(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}, \frac{(10 \mathbf{x}) \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$
Repeat the computations with new random vectors \mathbf{x} and \mathbf{y}. What do you conjecture about the mapping $\mathbf{x} \mapsto T(\mathbf{x})=$ $\left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$ (for $\mathbf{v} \neq \mathbf{0}$)? Verify your conjecture algebraically.
34. [M] Let $A=\left[\begin{array}{rrrrr}-6 & 3 & -27 & -33 & -13 \\ 6 & -5 & 25 & 28 & 14 \\ 8 & -6 & 34 & 38 & 18 \\ 12 & -10 & 50 & 41 & 23 \\ 14 & -21 & 49 & 29 & 33\end{array}\right]$. Construct
a matrix N whose columns form a basis for $\operatorname{Nul} A$, and construct a matrix R whose rows form a basis for Row A (see Section 4.6 for details). Perform a matrix computation with N and R that illustrates a fact from Theorem 3.

