I.

338 CHAPTER 6 Orthogonality and Least Squares

which can be rearranged to produce

$$\|\mathbf{u}\| \|\mathbf{v}\| \cos \vartheta = \frac{1}{2} \left[\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 \right]$$

= $\frac{1}{2} \left[u_1^2 + u_2^2 + v_1^2 + v_2^2 - (u_1 - v_1)^2 - (u_2 - v_2)^2 \right]$
= $u_1 v_1 + u_2 v_2$
= $\mathbf{u} \cdot \mathbf{v}$

The verification for \mathbb{R}^3 is similar. When n > 3, formula (2) may be used to *define* the angle between two vectors in \mathbb{R}^n . In statistics, for instance, the value of $\cos \vartheta$ defined by (2) for suitable vectors **u** and **v** is what statisticians call a *correlation coefficient*.

PRACTICE PROBLEMS

1. Let
$$\mathbf{a} = \begin{bmatrix} -2\\1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -3\\1 \end{bmatrix}$. Compute $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$ and $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$.
2. Let $\mathbf{c} = \begin{bmatrix} 4/3\\-1\\2/3 \end{bmatrix}$ and $\mathbf{d} = \begin{bmatrix} 5\\6\\-1 \end{bmatrix}$.

- a. Find a unit vector \mathbf{u} in the direction of \mathbf{c} .
- b. Show that **d** is orthogonal to **c**.
- c. Use the results of (a) and (b) to explain why **d** must be orthogonal to the unit vector **u**.
- Let W be a subspace of Rⁿ. Exercise 30 establishes that W[⊥] is also a subspace of Rⁿ. Prove that dim W + dim W[⊥] = n.

6.1 EXERCISES

Compute the quantities in Exercises 1–8 using the vectors $\mathbf{u} = \begin{bmatrix} -1\\2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 4\\6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3\\-1\\-5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 6\\-2\\3 \end{bmatrix}$ 1. $\mathbf{u} \cdot \mathbf{u}, \mathbf{v} \cdot \mathbf{u}, \text{ and } \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ 2. $\mathbf{w} \cdot \mathbf{w}, \mathbf{x} \cdot \mathbf{w}, \text{ and } \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$ 3. $\frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ 4. $\frac{1}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$ 5. $\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$ 6. $\left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}}\right) \mathbf{x}$ 7. $\|\mathbf{w}\|$ 8. $\|\mathbf{x}\|$

In Exercises 9–12, find a unit vector in the direction of the given vector.

9.
$$\begin{bmatrix} -30\\40 \end{bmatrix}$$
 10. $\begin{bmatrix} -6\\4\\-3 \end{bmatrix}$

11.
$$\begin{bmatrix} 7/4 \\ 1/2 \\ 1 \end{bmatrix}$$
 12.
$$\begin{bmatrix} 8/3 \\ 2 \end{bmatrix}$$

13. Find the distance between $\mathbf{x} = \begin{bmatrix} 10 \\ -3 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$.

14. Find the distance between
$$\mathbf{u} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$$
 and $\mathbf{z} = \begin{bmatrix} -4 \\ -1 \\ 8 \end{bmatrix}$.

Determine which pairs of vectors in Exercises 15–18 are orthogonal.

15.
$$\mathbf{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

16. $\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$
17. $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ -5 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -4 \\ 1 \\ -2 \\ 6 \end{bmatrix}$
18. $\mathbf{y} = \begin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix}$

In Exercises 19 and 20, all vectors are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

19. a. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$.

- b. For any scalar c, $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
- c. If the distance from u to v equals the distance from u to -v, then u and v are orthogonal.
- d. For a square matrix A, vectors in Col A are orthogonal to vectors in Nul A.

e. If vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_j for $j = 1, \ldots, p$, then \mathbf{x} is in W^{\perp} .

20. a.
$$\mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{u} = 0$$
.

- b. For any scalar c, $||c\mathbf{v}|| = c ||\mathbf{v}||$.
- c. If **x** is orthogonal to every vector in a subspace W, then **x** is in W^{\perp} .
- d. If $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal.
- e. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
- **21.** Use the transpose definition of the inner product to verify parts (b) and (c) of Theorem 1. Mention the appropriate facts from Chapter 2.
- **22.** Let $\mathbf{u} = (u_1, u_2, u_3)$. Explain why $\mathbf{u} \cdot \mathbf{u} \ge 0$. When is $\mathbf{u} \cdot \mathbf{u} = 0$?

23. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -7 \\ -4 \\ 6 \end{bmatrix}$. Compute and compare

 $\mathbf{u} \cdot \mathbf{v}$, $\|\mathbf{u}\|^2$, $\|\mathbf{v}\|^2$, and $\|\mathbf{u} + \mathbf{v}\|^2$. Do not use the Pythagorean Theorem.

24. Verify the *parallelogram law* for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n :

 $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$

25. Let
$$\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$$
. Describe the set *H* of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ that are orthogonal to \mathbf{v} . [*Hint:* Consider $\mathbf{v} = \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$.]

26. Let $\mathbf{u} = \begin{bmatrix} 5 \\ -6 \\ 7 \end{bmatrix}$, and let W be the set of all \mathbf{x} in \mathbb{R}^3 such that

 $\mathbf{u} \cdot \mathbf{x} = 0$. What theorem in Chapter 4 can be used to show that W is a subspace of \mathbb{R}^3 ? Describe W in geometric language.

- 27. Suppose a vector \mathbf{y} is orthogonal to vectors \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to the vector $\mathbf{u} + \mathbf{v}$.
- **28.** Suppose **y** is orthogonal to **u** and **v**. Show that **y** is orthogonal to every **w** in Span {**u**, **v**}. [*Hint*: An arbitrary **w** in Span {**u**, **v**} has the form $\mathbf{w} = c_1\mathbf{u} + c_2\mathbf{v}$. Show that **y** is orthogonal to such a vector **w**.]

29. Let $W = \text{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$. Show that if **x** is orthogonal to each \mathbf{v}_j , for $1 \le j \le p$, then **x** is orthogonal to every vector in W.

6.1 Inner Product, Length, and Orthogonality 339

L

- **30.** Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n using the following steps.
 - a. Take z in W[⊥], and let u represent any element of W. Then z u = 0. Take any scalar c and show that cz is orthogonal to u. (Since u was an arbitrary element of W, this will show that cz is in W[⊥].)
 - b. Take \mathbf{z}_1 and \mathbf{z}_2 in W^{\perp} , and let \mathbf{u} be any element of W. Show that $\mathbf{z}_1 + \mathbf{z}_2$ is orthogonal to \mathbf{u} . What can you conclude about $\mathbf{z}_1 + \mathbf{z}_2$? Why?
 - c. Finish the proof that W^{\perp} is a subspace of \mathbb{R}^n .
- **31.** Show that if **x** is in both *W* and W^{\perp} , then **x** = **0**.
- **32.** [M] Construct a pair \mathbf{u} , \mathbf{v} of random vectors in \mathbb{R}^4 , and let

$$A = \begin{bmatrix} .5 & .5 & .5 & .5 \\ .5 & .5 & -.5 & -.5 \\ .5 & -.5 & .5 & -.5 \\ .5 & -.5 & -.5 & .5 \end{bmatrix}$$

- a. Denote the columns of A by a₁,..., a₄. Compute the length of each column, and compute a₁·a₂, a₁·a₃, a₁·a₄, a₂·a₃, a₂·a₄, and a₃·a₄.
- b. Compute and compare the lengths of **u**, A**u**, **v**, and A**v**.
- c. Use equation (2) in this section to compute the cosine of the angle between u and v. Compare this with the cosine of the angle between Au and Av.
- d. Repeat parts (b) and (c) for two other pairs of random vectors. What do you conjecture about the effect of *A* on vectors?
- **33.** [M] Generate random vectors \mathbf{x} , \mathbf{y} , and \mathbf{v} in \mathbb{R}^4 with integer entries (and $\mathbf{v} \neq \mathbf{0}$), and compute the quantities

$$\left(\frac{\mathbf{x}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\right)\mathbf{v}, \left(\frac{\mathbf{y}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\right)\mathbf{v}, \frac{(\mathbf{x}+\mathbf{y})\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\mathbf{v}, \frac{(10\mathbf{x})\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\mathbf{v}$$

Repeat the computations with new random vectors \mathbf{x} and \mathbf{y} . What do you conjecture about the mapping $\mathbf{x} \mapsto T(\mathbf{x}) =$

 $\left(\frac{\mathbf{x}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\right)\mathbf{v}$ (for $\mathbf{v}\neq\mathbf{0}$)? Verify your conjecture algebraically.

34. [**M**] Let
$$A = \begin{bmatrix} -6 & 3 & -27 & -33 & -13 \\ 6 & -5 & 25 & 28 & 14 \\ 8 & -6 & 34 & 38 & 18 \\ 12 & -10 & 50 & 41 & 23 \\ 14 & -21 & 49 & 29 & 33 \end{bmatrix}$$
. Construct

a matrix N whose columns form a basis for Nul A, and construct a matrix R whose *rows* form a basis for Row A (see Section 4.6 for details). Perform a matrix computation with N and R that illustrates a fact from Theorem 3.

T