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INCORPORATING

TECHNOLOGY
Computing a Definite Integral The definite integral in Example 7 is evaluated in

Fig. 4. To do this evaluation, select MATH 9. Complete the integral, as shown in
Fig. 4. Then press ENTER.

Figure 4

Check Your Understanding 6.2
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EXERCISES 6.2
In Exercises 1–14, evaluate the given integral.
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In Exercises 19–22, combine the integrals into one integral, then
evaluate the integral.
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23. Given f �(x) = −2x + 3, compute f (3) − f (1). [Hint: Use
(8).]

24. Given f �(x) = 73, compute f (4) − f (2). [Hint: Use (8).]

25. Given f �(t) = −.5t + e−2 t , compute f (1) − f (−1). [Hint:
Use (8).]

26. Given f �(t) = −12t− 1
et

, compute f (3)− f (0). [Hint: Use

(8).]
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29. Refer to Fig. 7 and evaluate
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31. Net Change in Position A rock is dropped from the top of a
400-foot cliff. Its velocity at time t seconds is v(t) = −32t
feet per second. Find the displacement of the rock during
the time interval 2 ≤ t ≤ 4.

32. Net Change in Position The velocity at time t seconds of a
ball thrown up into the air is v(t) = −32t + 75 feet per
second.
(a) Find the displacement of the ball during the time

interval 0 ≤ t ≤ 3.

(b) Given that the initial position of the ball is
s(0) = 6 feet, use (a) to determine its position at time
t = 3.

33. Net Change in Position The velocity at time t seconds of a
ball thrown up into the air is v(t) = −32t + 75 feet per
second.
(a) Compute the displacement of the ball during the time

interval 1 ≤ t ≤ 3. Is the position of the ball at time
t = 3 higher than its position at time t = 1? Justify
your answer.

(b) Repeat part (a) using the time interval 1 ≤ t ≤ 5.

34. Velocity of a Skydiver The velocity of a skydiver at time
t seconds is v(t) = 45 − 45e−.2 t meters per second.
Find the distance traveled by the skydiver the first
9 seconds.

35. Net Change in Cost A company’s marginal cost function is
.1x2 −x+12 dollars, where x denotes the number of units
produced in 1 day.
(a) Determine the increase in cost if the production level

is raised from x = 1 to x = 3 units.

(b) If C(1) = 15, determine C(3) using your answer
in (a).

36. Cost Increase A company’s marginal cost function is given
by C �(x) = 32 + x

20 , where x denotes the number of
items produced in 1 day and C(x) is in thousands of
dollars. Determine the increase in cost if the company
goes from a production level of 15 to 20 items per
day.

37. Net Increase of an Investment An investment grew at an ex-
ponential rate R(t) = 700e.07 t + 1000, where t is in years
and R(t) is in dollars per year. Approximate the net in-
crease in value of the investment after the first 10 years
(as t varies from 0 to 10).

38. Depreciation of Real Estate A property with an appraised
value of $200,000 in 2008 is depreciating at the rate
R(t) = −8e−.04 t , where t is in years since 2008 and R(t)
is in thousands of dollars per year. Estimate the loss in
value of the property between 2008 and 2014 (as t varies
from 0 to 6).

39. Population Model with Emigration The rate of change of a
population with emigration is given by P �(t) = 7

300 e
t/25 −

1
80 e

t/16 , where P (t) is the population in millions, t years
after the year 2000.
(a) Estimate the change in population as t varies from

2000 to 2010.

(b) Estimate the change in population as t varies from
2010 to 2040. Compare and explain your answers in
(a) and (b).

40. Paying Down a Mortgage You took a $200,000 home mort-
gage at an annual interest rate of 3%. Suppose that the
loan is amortized over a period of 30 years, and let P (t)
denote the amount of money (in thousands of dollars) that
you owe on the loan after t years. A reasonable estimate of
the rate of change of P is given by P �(t) = −4.1107e0 .03 t .
(a) Approximate the net change in P after 20 years.

(b) What is the amount of money owed on the loan after
20 years?

(c) Verify that the loan is paid off in 30 years by com-
puting the net change in P after 30 years.

41. Mortgage Using the data from the previous exercise, find
P (t). [Hint: P (0) = 200.]

42. Radioactive Decay A sample of radioactive material with
decay constant .1 is decaying at a rate R(t) = −e−.1 t

grams per year. How many grams of this material decayed
after the first 10 years?

43. Saline Solution A saline solution is being flushed with
fresh water in such a way that salt is eliminated at
the rate r(t) = −(t + 1

2 ) grams per minute. Find
the amount of salt that is eliminated during the first
2 minutes.

44. Level of Water in a Tank A conical-shaped tank is being
drained. The height of the water level in the tank is de-
creasing at the rate h�(t) = − t

2 inches per minute. Find
the decrease in the depth of the water in the tank during
the time interval 2 ≤ t ≤ 4.
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Solution to Check Your Understanding 6.2

1. Start by simplifying
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An antiderivative of ex is ex , and an antiderivative of
e−x is −e−x . Hence, an antiderivative of ex − e−x is

ex − (−e−x ), and so,
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0
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= (ex + e−x )
���
1

0

= (e + e−1 ) − (1 + 1) = e + 1/e − 2 ≈ 1.09.

6.3 The Definite Integral and Area under a Graph
This section and the next reveal the important connection between definite integrals
and areas of regions under curves. We start by defining one type of region that we will
be considering.

Area under a Graph If f(x) is a continuous nonnegative function on the interval
a ≤ x ≤ b, we refer to the area of the region shown in Fig. 1 as the area under the
graph of f(x) from a to b, or the area bounded by the graph of f(x), the x-axis, and
the (vertical) lines x = a and x = b.
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y = f(x)

a b

Figure 1 Area under a
graph.

In this section we solve the area problem, which consists of finding the area of
the region under the graph of a continuous function f(x) from a to b as illustrated in
Fig. 1.

Many areas of this type are easy to compute with simple geometric constructions.
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Figure 2 Areas under graphs.
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In Fig. 2(a), the shaded rectangular region is under the graph of the constant
function f(x) = 4 from x = 0 to x = 3. Its area is 3 × 4 = 12.

In Fig. 2(b), the shaded region under the graph of the function g(x) = −x + 4
from x = 2 to x = 3 is a trapezoid that consists of a right triangle on top of a square.
Its total area is 1

2 + 1 = 3
2 .

In Fig. 2(c), we shaded a region under the graph of a “ramp function.” Its area is
also the sum of the areas of a triangle plus a rectangle and is equal to 2 + 4 = 6.
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Figure 3 Area under the
parabola.

In all three examples in Fig. 2, the top boundary of the region consists of line seg-
ments. The areas in these cases can be computed with simple geometric constructions.
The computation of the area such as graphed in Fig. 1 is not a trivial matter when
the top boundary of the region is curved. Consider, for example, the region under the
graph of the parabola f(x) = x2 from x = 0 to x = 1 (Fig. 3). It is not hard to see
that this area is less than 1/2. But what is the exact value of the area? Obviously, the
answer cannot be derived from simple geometric formulas. We will show how to solve
this area problem using important techniques based on approximations with rectan-
gles. These same techniques will also be used to establish the following fundamental
result in calculus, which provides the solution to the area problem.


