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The phenomenon displayed in Example 7 persists in higher dimensions. For
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FIGURE 5

Iterates of two points under the
action of a 3 � 3 matrix with a
complex eigenvalue.

instance, if A is a 3 � 3 matrix with a complex eigenvalue, then there is a plane in
R3 on which A acts as a rotation (possibly combined with scaling). Every vector in that
plane is rotated into another point on the same plane. We say that the plane is invariant
under A.

EXAMPLE 8 The matrix A D
2
4

:8 �:6 0

:6 :8 0

0 0 1:07

3
5 has eigenvalues :8 ˙ :6i and

1.07. Any vector w0 in the x1x2-plane (with third coordinate 0) is rotated by A into
another point in the plane. Any vector x0 not in the plane has its x3-coordinate multiplied
by 1.07. The iterates of the pointsw0 D .2; 0; 0/ and x0 D .2; 0; 1/ under multiplication
by A are shown in Figure 5.

PRACTICE PROBLEM

Show that if a and b are real, then the eigenvalues of A D
�

a �b

b a

�
are a ˙ bi , with

corresponding eigenvectors

�
1

�i

�
and

�
1

i

�
.

5.5 EXERCISES
Let each matrix in Exercises 1–6 act on C2. Find the eigenvalues
and a basis for each eigenspace in C2.

1.

�
1 �2

1 3

�
2.

�
5 �5

1 1

�

3.

�
1 5

�2 3

�
4.

�
5 �2

1 3

�

5.

�
0 1

�8 4

�
6.

�
4 3

�3 4

�

In Exercises 7–12, use Example 6 to list the eigenvalues of A.
In each case, the transformation x 7! Ax is the composition of
a rotation and a scaling. Give the angle ' of the rotation, where
�� < ' � � , and give the scale factor r .

7.

� p
3 �1

1
p

3

�
8.

� p
3 3

�3
p

3

�

9.

� �p
3=2 1=2

�1=2 �p
3=2

�
10.

� �5 �5

5 �5

�

11.

�
:1 :1

�:1 :1

�
12.

�
0 :3

�:3 0

�

In Exercises 13–20, find an invertible matrix P and a matrix

C of the form

�
a �b

b a

�
such that the given matrix has the

form A D P CP �1. For Exercises 13–16, use information from
Exercises 1–4.

13.

�
1 �2

1 3

�
14.

�
5 �5

1 1

�

15.

�
1 5

�2 3

�
16.

�
5 �2

1 3

�

17.

�
1 �:8

4 �2:2

�
18.

�
1 �1

:4 :6

�

19.

�
1:52 �:7

:56 :4

�
20.

� �1:64 �2:4

1:92 2:2

�

21. In Example 2, solve the first equation in (2) for x2 in terms of

x1, and from that produce the eigenvector y D
�

2

�1 C 2i

�

for the matrix A. Show that this y is a (complex) multiple of
the vector v1 used in Example 2.

22. Let A be a complex (or real) n � n matrix, and let x in Cn be
an eigenvector corresponding to an eigenvalue � in C. Show
that for each nonzero complex scalar �, the vector �x is an
eigenvector of A.

Chapter 7 will focus on matrices A with the property that AT D A.
Exercises 23 and 24 show that every eigenvalue of such a matrix
is necessarily real.

23. Let A be an n � n real matrix with the property that AT D A,
let x be any vector in Cn, and let q D xTAx. The equalities
below show that q is a real number by verifying that q D q.
Give a reason for each step.

q D xTAx D xTAx D xTAx D .xTAx/T D xTAT x D q

(a) (b) (c) (d) (e)
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24. Let A be an n � n real matrix with the property that AT D A.
Show that if Ax D �x for some nonzero vector x in Cn, then,
in fact, � is real and the real part of x is an eigenvector of A.
[Hint: Compute xTAx, and use Exercise 23. Also, examine
the real and imaginary parts of Ax.]

25. Let A be a real n � n matrix, and let x be a vector in Cn. Show
that Re.Ax/ D A.Re x/ and Im.Ax/ D A.Im x/.

26. Let A be a real 2 � 2 matrix with a complex eigenvalue
� D a � bi (b ¤ 0) and an associated eigenvector v in C2.

a. Show that A.Re v/ D a Re vC b Im v and A.Im v/ D
�b Re vC a Im v. [Hint: Write v D Re vC i Im v, and
compute Av.]

b. Verify that if P and C are given as in Theorem 9, then
AP D P C .

[M] In Exercises 27 and 28, find a factorization of the given
matrix A in the form A D P CP �1, where C is a block-diagonal
matrix with 2 � 2 blocks of the form shown in Example 6. (For
each conjugate pair of eigenvalues, use the real and imaginary
parts of one eigenvector in C4 to create two columns of P .)

27.

2
664

:7 1:1 2:0 1:7

�2:0 �4:0 �8:6 �7:4

0 �:5 �1:0 �1:0

1:0 2:8 6:0 5:3

3
775

28.

2
664

�1:4 �2:0 �2:0 �2:0

�1:3 �:8 �:1 �:6

:3 �1:9 �1:6 �1:4

2:0 3:3 2:3 2:6

3
775

SOLUTION TO PRACTICE PROBLEM

Remember that it is easy to test whether a vector is an eigenvector. There is no need to
examine the characteristic equation. Compute

Ax D
�

a �b

b a

��
1

�i

�
D

�
a C bi

b � ai

�
D .a C bi/

�
1

�i

�

Thus

�
1

�i

�
is an eigenvector corresponding to � D a C bi . From the discussion in this

section,

�
1

i

�
must be an eigenvector corresponding to � D a � bi .

5.6 DISCRETE DYNAMICAL SYSTEMS

Eigenvalues and eigenvectors provide the key to understanding the long-term behavior,
or evolution, of a dynamical system described by a difference equation xkC1 D Axk .
Such an equation was used to model population movement in Section 1.10, various
Markov chains in Section 4.9, and the spotted owl population in the introductory
example for this chapter. The vectors xk give information about the system as time
(denoted by k) passes. In the spotted owl example, for instance, xk listed the numbers
of owls in three age classes at time k.

The applications in this section focus on ecological problems because they are easier
to state and explain than, say, problems in physics or engineering. However, dynamical
systems arise in many scientific fields. For instance, standard undergraduate courses
in control systems discuss several aspects of dynamical systems. The modern state-
space design method in such courses relies heavily on matrix algebra.1 The steady-state
response of a control system is the engineering equivalent of what we call here the
“long-term behavior” of the dynamical system xkC1 D Axk .

1 See G. F. Franklin, J. D. Powell, and A. Emami-Naeimi, Feedback Control of Dynamic Systems, 5th ed.
(Upper Saddle River, NJ: Prentice-Hall, 2006). This undergraduate text has a nice introduction to dynamic
models (Chapter 2). State-space design is covered in Chapters 7 and 8.
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