5.4 Eigenvectors and Linear Transformations 295

- NUMERICAL NOTE -

An efficient way to compute a \mathcal{B} -matrix $P^{-1}AP$ is to compute AP and then to row reduce the augmented matrix $\begin{bmatrix} P & AP \end{bmatrix}$ to $\begin{bmatrix} I & P^{-1}AP \end{bmatrix}$. A separate computation of P^{-1} is unnecessary. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Find $T(a_0 + a_1t + a_2t^2)$, if T is the linear transformation from \mathbb{P}_2 to \mathbb{P}_2 whose matrix relative to $\mathcal{B} = \{1, t, t^2\}$ is

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$

- 2. Let A, B, and C be $n \times n$ matrices. The text has shown that if A is similar to B, then B is similar to A. This property, together with the statements below, shows that "similar to" is an *equivalence relation*. (Row equivalence is another example of an equivalence relation.) Verify parts (a) and (b).
 - a. A is similar to A.
 - b. If A is similar to B and B is similar to C, then A is similar to C.

5.4 EXERCISES

1. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ and $\mathcal{D} = {\mathbf{d}_1, \mathbf{d}_2}$ be bases for vector spaces *V* and *W*, respectively. Let $T : V \to W$ be a linear transformation with the property that

 $T(\mathbf{b}_1) = 3\mathbf{d}_1 - 5\mathbf{d}_2, \quad T(\mathbf{b}_2) = -\mathbf{d}_1 + 6\mathbf{d}_2, \quad T(\mathbf{b}_3) = 4\mathbf{d}_2$ Find the matrix for *T* relative to *B* and *D*.

2. Let $\mathcal{D} = {\mathbf{d}_1, \mathbf{d}_2}$ and $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ be bases for vector spaces V and W, respectively. Let $T : V \to W$ be a linear transformation with the property that

$$T(\mathbf{d}_1) = 2\mathbf{b}_1 - 3\mathbf{b}_2, \qquad T(\mathbf{d}_2) = -4\mathbf{b}_1 + 5\mathbf{b}_2$$

Find the matrix for T relative to \mathcal{D} and \mathcal{B} .

3. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space *V*, and $T : \mathbb{R}^3 \to V$ be a linear transformation with the property that

$$T(x_1, x_2, x_3) = (x_3 - x_2)\mathbf{b}_1 - (x_1 + x_3)\mathbf{b}_2 + (x_1 - x_2)\mathbf{b}_3$$

- a. Compute $T(\mathbf{e}_1)$, $T(\mathbf{e}_2)$, and $T(\mathbf{e}_3)$.
- b. Compute $[T(\mathbf{e}_1)]_{\mathcal{B}}, [T(\mathbf{e}_2)]_{\mathcal{B}}$, and $[T(\mathbf{e}_3)]_{\mathcal{B}}$.
- c. Find the matrix for T relative to \mathcal{E} and \mathcal{B} .
- **4.** Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ be a basis for a vector space *V* and $T: V \to \mathbb{R}^2$ be a linear transformation with the property that

$$T(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + x_3\mathbf{b}_3) = \begin{bmatrix} 2x_1 - 4x_2 + 5x_3\\ -x_2 + 3x_3 \end{bmatrix}$$

Find the matrix for *T* relative to \mathcal{B} and the standard basis for \mathbb{R}^2 .

- 5. Let $T : \mathbb{P}_2 \to \mathbb{P}_3$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $(t + 5)\mathbf{p}(t)$.
 - a. Find the image of $\mathbf{p}(t) = 2 t + t^2$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3\}$.
- 6. Let $T : \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $\mathbf{p}(t) + t^2 \mathbf{p}(t)$.
 - a. Find the image of $\mathbf{p}(t) = 2 t + t^2$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3, t^4\}$.
- 7. Assume the mapping $T : \mathbb{P}_2 \to \mathbb{P}_2$ defined by

 $T(a_0 + a_1t + a_2t^2) = 3a_0 + (5a_0 - 2a_1)t + (4a_1 + a_2)t^2$

is linear. Find the matrix representation of T relative to the basis $\mathcal{B} = \{1, t, t^2\}$.

8. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ be a basis for a vector space V. Find $T(3\mathbf{b}_1 - 4\mathbf{b}_2)$ when T is a linear transformation from V to V whose matrix relative to \mathcal{B} is

$$]_{\mathcal{B}} = \begin{bmatrix} 0 & -6 & 1 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$

[T]

T

296 CHAPTER 5 Eigenvalues and Eigenvectors

9. Define
$$T : \mathbb{P}_2 \to \mathbb{R}^3$$
 by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-1) \\ \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$.

- a. Find the image under T of $\mathbf{p}(t) = 5 + 3t$.
- b. Show that T is a linear transformation.
- c. Find the matrix for T relative to the basis $\{1, t, t^2\}$ for \mathbb{P}_2 and the standard basis for \mathbb{R}^3 .

10. Define
$$T : \mathbb{P}_3 \to \mathbb{R}^4$$
 by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-3) \\ \mathbf{p}(-1) \\ \mathbf{p}(1) \\ \mathbf{p}(3) \end{bmatrix}$

- a. Show that T is a linear transformation.
- b. Find the matrix for *T* relative to the basis $\{1, t, t^2, t^3\}$ for \mathbb{P}_3 and the standard basis for \mathbb{R}^4 .

In Exercises 11 and 12, find the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$, when $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$.

11.
$$A = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
12. $A = \begin{bmatrix} -1 & 4 \\ -2 & 3 \end{bmatrix}$, $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

In Exercises 13–16, define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^2 with the property that $[T]_{\mathcal{B}}$ is diagonal.

13.
$$A = \begin{bmatrix} 0 & 1 \\ -3 & 4 \end{bmatrix}$$

14.
$$A = \begin{bmatrix} 5 & -3 \\ -7 & 1 \end{bmatrix}$$

15.
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$

16.
$$A = \begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix}$$

17. Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$
 and
$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}, \text{ for } \mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{b}_2 = \begin{bmatrix} 5 \\ 4 \end{bmatrix}. \text{ Define } T : \mathbb{R}^2 \to \mathbb{R}^2 \text{ by } T(\mathbf{x}) = A\mathbf{x}.$$

- a. Verify that **b**₁ is an eigenvector of A but A is not diagonalizable.
- b. Find the \mathcal{B} -matrix for T.
- 18. Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, where A is a 3×3 matrix with eigenvalues 5 and -2. Does there exist a basis \mathcal{B} for \mathbb{R}^3 such that the \mathcal{B} -matrix for T is a diagonal matrix? Discuss.

Verify the statements in Exercises 19-24. The matrices are square.

- **19.** If A is invertible and similar to B, then B is invertible and A^{-1} is similar to B^{-1} . [*Hint:* $P^{-1}AP = B$ for some invertible P. Explain why B is invertible. Then find an invertible Q such that $Q^{-1}A^{-1}Q = B^{-1}$.]
- **20.** If A is similar to B, then A^2 is similar to B^2 .
- **21.** If B is similar to A and C is similar to A, then B is similar to C.

- **22.** If *A* is diagonalizable and *B* is similar to *A*, then *B* is also diagonalizable.
- 23. If $B = P^{-1}AP$ and **x** is an eigenvector of A corresponding to an eigenvalue λ , then $P^{-1}\mathbf{x}$ is an eigenvector of B corresponding also to λ .
- **24.** If *A* and *B* are similar, then they have the same rank. [*Hint:* Refer to Supplementary Exercises 13 and 14 for Chapter 4.]
- **25.** The *trace* of a square matrix A is the sum of the diagonal entries in A and is denoted by tr A. It can be verified that tr(FG) = tr(GF) for any two $n \times n$ matrices F and G. Show that if A and B are similar, then tr A = tr B.
- **26.** It can be shown that the trace of a matrix *A* equals the sum of the eigenvalues of *A*. Verify this statement for the case when *A* is diagonalizable.
- **27.** Let *V* be \mathbb{R}^n with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$; let *W* be \mathbb{R}^n with the standard basis, denoted here by \mathcal{E} ; and consider the identity transformation $I : V \to W$, where $I(\mathbf{x}) = \mathbf{x}$. Find the matrix for *I* relative to \mathcal{B} and \mathcal{E} . What was this matrix called in Section 4.4?
- **28.** Let *V* be a vector space with a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}, W$ be the same space as *V* with a basis $\mathcal{C} = {\mathbf{c}_1, \dots, \mathbf{c}_n}$, and *I* be the identity transformation $I : V \to W$. Find the matrix for *I* relative to \mathcal{B} and \mathcal{C} . What was this matrix called in Section 4.7?
- **29.** Let *V* be a vector space with a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$. Find the \mathcal{B} -matrix for the identity transformation $I : V \to V$.

[M] In Exercises 30 and 31, find the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$ when $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

30.
$$A = \begin{bmatrix} -14 & 4 & -14 \\ -33 & 9 & -31 \\ 11 & -4 & 11 \end{bmatrix},$$
$$\mathbf{b}_1 = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}$$
$$31. \quad A = \begin{bmatrix} -7 & -48 & -16 \\ 1 & 14 & 6 \\ -3 & -45 & -19 \end{bmatrix},$$
$$\mathbf{b}_1 = \begin{bmatrix} -3 \\ 1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$$

32. [M] Let T be the transformation whose standard matrix is given below. Find a basis for \mathbb{R}^4 with the property that $[T]_{\mathcal{B}}$ is diagonal.

A =	[15]	-66	-44	-33
	0	13	21	-15
	1	-15	-21	12
	2	-18	-22	8