NUMERICAL NOTE

An efficient way to compute a \mathcal{B}-matrix $P^{-1} A P$ is to compute $A P$ and then to row reduce the augmented matrix $\left[\begin{array}{ll}P & A P\end{array}\right]$ to $\left[\begin{array}{ll}I & P^{-1} A P\end{array}\right]$. A separate computation of P^{-1} is unnecessary. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Find $T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)$, if T is the linear transformation from \mathbb{P}_{2} to \mathbb{P}_{2} whose matrix relative to $\mathcal{B}=\left\{1, t, t^{2}\right\}$ is

$$
[T]_{\mathcal{B}}=\left[\begin{array}{rrr}
3 & 4 & 0 \\
0 & 5 & -1 \\
1 & -2 & 7
\end{array}\right]
$$

2. Let A, B, and C be $n \times n$ matrices. The text has shown that if A is similar to B, then B is similar to A. This property, together with the statements below, shows that "similar to" is an equivalence relation. (Row equivalence is another example of an equivalence relation.) Verify parts (a) and (b).
a. A is similar to A.
b. If A is similar to B and B is similar to C, then A is similar to C.

5.4 EXERCISES

1. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ and $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}\right\}$ be bases for vector spaces V and W, respectively. Let $T: V \rightarrow W$ be a linear transformation with the property that
$T\left(\mathbf{b}_{1}\right)=3 \mathbf{d}_{1}-5 \mathbf{d}_{2}, \quad T\left(\mathbf{b}_{2}\right)=-\mathbf{d}_{1}+6 \mathbf{d}_{2}, \quad T\left(\mathbf{b}_{3}\right)=4 \mathbf{d}_{2}$
Find the matrix for T relative to \mathcal{B} and \mathcal{D}.
2. Let $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ be bases for vector spaces V and W, respectively. Let $T: V \rightarrow W$ be a linear transformation with the property that
$T\left(\mathbf{d}_{1}\right)=2 \mathbf{b}_{1}-3 \mathbf{b}_{2}, \quad T\left(\mathbf{d}_{2}\right)=-4 \mathbf{b}_{1}+5 \mathbf{b}_{2}$
Find the matrix for T relative to \mathcal{D} and \mathcal{B}.
3. Let $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the standard basis for \mathbb{R}^{3}, $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be a basis for a vector space V, and $T: \mathbb{R}^{3} \rightarrow V$ be a linear transformation with the property that
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}-x_{2}\right) \mathbf{b}_{1}-\left(x_{1}+x_{3}\right) \mathbf{b}_{2}+\left(x_{1}-x_{2}\right) \mathbf{b}_{3}$
a. Compute $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)$, and $T\left(\mathbf{e}_{3}\right)$.
b. Compute $\left[T\left(\mathbf{e}_{1}\right)\right]_{\mathcal{B}},\left[T\left(\mathbf{e}_{2}\right)\right]_{\mathcal{B}}$, and $\left[T\left(\mathbf{e}_{3}\right)\right]_{\mathcal{B}}$.
c. Find the matrix for T relative to \mathcal{E} and \mathcal{B}.
4. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be a basis for a vector space V and $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation with the property that $T\left(x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+x_{3} \mathbf{b}_{3}\right)=\left[\begin{array}{r}2 x_{1}-4 x_{2}+5 x_{3} \\ -x_{2}+3 x_{3}\end{array}\right]$

Find the matrix for T relative to \mathcal{B} and the standard basis for \mathbb{R}^{2}.
5. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $(t+5) \mathbf{p}(t)$.
a. Find the image of $\mathbf{p}(t)=2-t+t^{2}$.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}\right\}$.
6. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $\mathbf{p}(t)+t^{2} \mathbf{p}(t)$.
a. Find the image of $\mathbf{p}(t)=2-t+t^{2}$.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.
7. Assume the mapping $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by
$T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=3 a_{0}+\left(5 a_{0}-2 a_{1}\right) t+\left(4 a_{1}+a_{2}\right) t^{2}$
is linear. Find the matrix representation of T relative to the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$.
8. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be a basis for a vector space V. Find $T\left(3 \mathbf{b}_{1}-4 \mathbf{b}_{2}\right)$ when T is a linear transformation from V to V whose matrix relative to \mathcal{B} is
$[T]_{\mathcal{B}}=\left[\begin{array}{rrr}0 & -6 & 1 \\ 0 & 5 & -1 \\ 1 & -2 & 7\end{array}\right]$
9. Define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{p})=\left[\begin{array}{r}\mathbf{p}(-1) \\ \mathbf{p}(0) \\ \mathbf{p}(1)\end{array}\right]$.
a. Find the image under T of $\mathbf{p}(t)=5+3 t$.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the basis $\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2} and the standard basis for \mathbb{R}^{3}.
10. Define $T: \mathbb{P}_{3} \rightarrow \mathbb{R}^{4}$ by $T(\mathbf{p})=\left[\begin{array}{r}\mathbf{p}(-3) \\ \mathbf{p}(-1) \\ \mathbf{p}(1) \\ \mathbf{p}(3)\end{array}\right]$.
a. Show that T is a linear transformation.
b. Find the matrix for T relative to the basis $\left\{1, t, t^{2}, t^{3}\right\}$ for \mathbb{P}_{3} and the standard basis for \mathbb{R}^{4}.

In Exercises 11 and 12, find the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$, when $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$.
11. $A=\left[\begin{array}{rr}3 & 4 \\ -1 & -1\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{r}2 \\ -1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
12. $A=\left[\begin{array}{ll}-1 & 4 \\ -2 & 3\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$

In Exercises 13-16, define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal.
13. $A=\left[\begin{array}{rr}0 & 1 \\ -3 & 4\end{array}\right]$
14. $A=\left[\begin{array}{rr}5 & -3 \\ -7 & 1\end{array}\right]$
15. $A=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$
16. $A=\left[\begin{array}{rr}2 & -6 \\ -1 & 3\end{array}\right]$
17. Let $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right]$ and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, for $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, $\mathbf{b}_{2}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$.
a. Verify that \mathbf{b}_{1} is an eigenvector of A but A is not diagonalizable.
b. Find the \mathcal{B}-matrix for T.
18. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$, where A is a 3×3 matrix with eigenvalues 5 and -2 . Does there exist a basis \mathcal{B} for \mathbb{R}^{3} such that the \mathcal{B}-matrix for T is a diagonal matrix? Discuss.

Verify the statements in Exercises 19-24. The matrices are square.
19. If A is invertible and similar to B, then B is invertible and A^{-1} is similar to B^{-1}. [Hint: $P^{-1} A P=B$ for some invertible P. Explain why B is invertible. Then find an invertible Q such that $Q^{-1} A^{-1} Q=B^{-1}$.]
20. If A is similar to B, then A^{2} is similar to B^{2}.
21. If B is similar to A and C is similar to A, then B is similar to C.
22. If A is diagonalizable and B is similar to A, then B is also diagonalizable.
23. If $B=P^{-1} A P$ and \mathbf{x} is an eigenvector of A corresponding to an eigenvalue λ, then $P^{-1} \mathbf{x}$ is an eigenvector of B corresponding also to λ.
24. If A and B are similar, then they have the same rank. [Hint: Refer to Supplementary Exercises 13 and 14 for Chapter 4.]
25. The trace of a square matrix A is the sum of the diagonal entries in A and is denoted by $\operatorname{tr} A$. It can be verified that $\operatorname{tr}(F G)=\operatorname{tr}(G F)$ for any two $n \times n$ matrices F and G. Show that if A and B are similar, then $\operatorname{tr} A=\operatorname{tr} B$.
26. It can be shown that the trace of a matrix A equals the sum of the eigenvalues of A. Verify this statement for the case when A is diagonalizable.
27. Let V be \mathbb{R}^{n} with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$; let W be \mathbb{R}^{n} with the standard basis, denoted here by \mathcal{E}; and consider the identity transformation $I: V \rightarrow W$, where $I(\mathbf{x})=\mathbf{x}$. Find the matrix for I relative to \mathcal{B} and \mathcal{E}. What was this matrix called in Section 4.4?
28. Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, W$ be the same space as V with a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$, and I be the identity transformation $I: V \rightarrow W$. Find the matrix for I relative to \mathcal{B} and \mathcal{C}. What was this matrix called in Section 4.7?
29. Let V be a vector space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Find the \mathcal{B}-matrix for the identity transformation $I: V \rightarrow V$.
[M] In Exercises 30 and 31, find the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$ when $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$.
30. $A=\left[\begin{array}{rrr}-14 & 4 & -14 \\ -33 & 9 & -31 \\ 11 & -4 & 11\end{array}\right]$,
$\mathbf{b}_{1}=\left[\begin{array}{r}-1 \\ -2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{r}-1 \\ -2 \\ 0\end{array}\right]$
31. $A=\left[\begin{array}{rrr}-7 & -48 & -16 \\ 1 & 14 & 6 \\ -3 & -45 & -19\end{array}\right]$,
$\mathbf{b}_{1}=\left[\begin{array}{r}-3 \\ 1 \\ -3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ -3\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{r}3 \\ -1 \\ 0\end{array}\right]$
32. [$\mathbf{M}]$ Let T be the transformation whose standard matrix is given below. Find a basis for \mathbb{R}^{4} with the property that $[T]_{\mathcal{B}}$ is diagonal.
$A=\left[\begin{array}{rrrr}15 & -66 & -44 & -33 \\ 0 & 13 & 21 & -15 \\ 1 & -15 & -21 & 12 \\ 2 & -18 & -22 & 8\end{array}\right]$

