5.2 The Characteristic Equation 281

EOA

This explicit formula for \mathbf{x}_k gives the solution of the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$. As $k \to \infty$, $(.92)^k$ tends to zero and \mathbf{x}_k tends to $\begin{bmatrix} .375\\.625 \end{bmatrix} = .125\mathbf{v}_1$.

The calculations in Example 5 have an interesting application to a Markov chain discussed in Section 4.9. Those who read that section may recognize that matrix A in Example 5 above is the same as the migration matrix M in Section 4.9, \mathbf{x}_0 is the initial population distribution between city and suburbs, and \mathbf{x}_k represents the population distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence \mathbf{x}_k tends to a steady-state vector. Now we know *why* the \mathbf{x}_k behave this way, at least for the migration matrix. The steady-state vector is $.125\mathbf{v}_1$, a multiple of the eigenvector \mathbf{v}_1 , and formula (5) for \mathbf{x}_k shows precisely why $\mathbf{x}_k \rightarrow .125\mathbf{v}_1$.

- NUMERICAL NOTES -

- 1. Computer software such as Mathematica and Maple can use symbolic calculations to find the characteristic polynomial of a moderate-sized matrix. But there is no formula or finite algorithm to solve the characteristic equation of a general $n \times n$ matrix for $n \ge 5$.
- 2. The best numerical methods for finding eigenvalues avoid the characteristic polynomial entirely. In fact, MATLAB finds the characteristic polynomial of a matrix A by first computing the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A and then expanding the product $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$.
- **3.** Several common algorithms for estimating the eigenvalues of a matrix A are based on Theorem 4. The powerful *QR algorithm* is discussed in the exercises. Another technique, called *Jacobi's method*, works when $A = A^T$ and computes a sequence of matrices of the form

$$A_1 = A$$
 and $A_{k+1} = P_k^{-1} A_k P_k$ $(k = 1, 2, ...)$

Each matrix in the sequence is similar to A and so has the same eigenvalues as A. The nondiagonal entries of A_{k+1} tend to zero as k increases, and the diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

PRACTICE PROBLEM

Find the characteristic equation and eigenvalues of $A = \begin{bmatrix} 1 & -4 \\ 4 & 2 \end{bmatrix}$.

5.2 EXERCISES

Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

- **1.** $\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$ **2.** $\begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$
- **3.** $\begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$ **4.** $\begin{bmatrix} 5 & -3 \\ -4 & 3 \end{bmatrix}$

5.	$\begin{bmatrix} 2\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1\\4 \end{bmatrix}$	$6. \begin{bmatrix} 3 & -4 \\ 4 & 8 \end{bmatrix}$	
7.	$\begin{bmatrix} 5\\ -4 \end{bmatrix}$	$\begin{bmatrix} 3\\4 \end{bmatrix}$	$8. \begin{bmatrix} 7 & -2 \\ 2 & 3 \end{bmatrix}$	

Exercises 9–14 require techniques from Section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for 3×3 determinants described

282 CHAPTER 5 Eigenvalues and Eigenvectors

prior to Exercises 15–18 in Section 3.1. [*Note:* Finding the characteristic polynomial of a 3×3 matrix is not easy to do with just row operations, because the variable λ is involved.]

9.
$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0 \end{bmatrix}$$
 10. $\begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$

 11. $\begin{bmatrix} 4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2 \end{bmatrix}$
 12. $\begin{bmatrix} -1 & 0 & 1 \\ -3 & 4 & 1 \\ 0 & 0 & 2 \end{bmatrix}$

 13. $\begin{bmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{bmatrix}$
 14. $\begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix}$

For the matrices in Exercises 15–17, list the eigenvalues, repeated according to their multiplicities.

$$\mathbf{15.} \begin{bmatrix}
 4 & -7 & 0 & 2 \\
 0 & 3 & -4 & 6 \\
 0 & 0 & 3 & -8 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \mathbf{16.} \begin{bmatrix}
 5 & 0 & 0 & 0 \\
 8 & -4 & 0 & 0 \\
 0 & 7 & 1 & 0 \\
 1 & -5 & 2 & 1 \\
 \mathbf{17.} \begin{bmatrix}
 3 & 0 & 0 & 0 & 0 \\
 -5 & 1 & 0 & 0 & 0 \\
 -5 & 1 & 0 & 0 & 0 \\
 3 & 8 & 0 & 0 & 0 \\
 0 & -7 & 2 & 1 & 0 \\
 -4 & 1 & 9 & -2 & 3
 \end{bmatrix}$$

18. It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ . Find *h* in the matrix *A* below such that the eigenspace for $\lambda = 5$ is two-dimensional:

	5	-2	6	-17
4 —	0	3	h	0
4 =	0	0	5	4
	0	0	0	1

19. Let *A* be an $n \times n$ matrix, and suppose *A* has *n* real eigenvalues, $\lambda_1, \ldots, \lambda_n$, repeated according to multiplicities, so that

 $\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda)\cdots(\lambda_n - \lambda)$

Explain why det A is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

20. Use a property of determinants to show that A and A^T have the same characteristic polynomial.

In Exercises 21 and 22, A and B are $n \times n$ matrices. Mark each statement True or False. Justify each answer.

- **21.** a. The determinant of A is the product of the diagonal entries in A.
 - b. An elementary row operation on *A* does not change the determinant.
 - c. $(\det A)(\det B) = \det AB$

 d. If λ + 5 is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.

- **22.** a. If A is 3×3 , with columns \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 , then det A equals the volume of the parallelepiped determined by \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3 .
 - b. det $A^T = (-1) \det A$.
 - c. The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A.
 - d. A row replacement operation on *A* does not change the eigenvalues.

A widely used method for estimating eigenvalues of a general matrix A is the QR algorithm. Under suitable conditions, this algorithm produces a sequence of matrices, all similar to A, that become almost upper triangular, with diagonal entries that approach the eigenvalues of A. The main idea is to factor A (or another matrix similar to A) in the form $A = Q_1R_1$, where $Q_1^T = Q_1^{-1}$ and R_1 is upper triangular. The factors are interchanged to form $A_1 = R_1Q_1$, which is again factored as $A_1 = Q_2R_2$; then to form $A_2 = R_2Q_2$, and so on. The similarity of A, A_1, \ldots follows from the more general result in Exercise 23.

- **23.** Show that if A = QR with Q invertible, then A is similar to $A_1 = RQ$.
- **24.** Show that if A and B are similar, then det $A = \det B$.
- **25.** Let $A = \begin{bmatrix} .6 & .3 \\ .4 & .7 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3/7 \\ 4/7 \end{bmatrix}$, $\mathbf{x}_0 = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$. [*Note: A* is the stochastic matrix studied in Example 5 of Section 4.9.]
 - a. Find a basis for \mathbb{R}^2 consisting of \mathbf{v}_1 and another eigenvector \mathbf{v}_2 of A.
 - b. Verify that \mathbf{x}_0 may be written in the form $\mathbf{x}_0 = \mathbf{v}_1 + c\mathbf{v}_2$.
 - c. For k = 1, 2, ..., define $\mathbf{x}_k = A^k \mathbf{x}_0$. Compute \mathbf{x}_1 and \mathbf{x}_2 , and write a formula for \mathbf{x}_k . Then show that $\mathbf{x}_k \to \mathbf{v}_1$ as k increases.
- **26.** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Use formula (1) for a determinant (given before Example 2) to show that det A = ad bc. Consider two cases: $a \neq 0$ and a = 0.

27. Let
$$A = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$,
 $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- a. Show that $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 are eigenvectors of A. [Note: A is the stochastic matrix studied in Example 3 of Section 4.9.]
- b. Let \mathbf{x}_0 be any vector in \mathbb{R}^3 with nonnegative entries whose sum is 1. (In Section 4.9, \mathbf{x}_0 was called a probability vector.) Explain why there are constants c_1 , c_2 , and c_3 such that $\mathbf{x}_0 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$. Compute $\mathbf{w}^T\mathbf{x}_0$, and deduce that $c_1 = 1$.
- c. For k = 1, 2, ..., define $\mathbf{x}_k = A^k \mathbf{x}_0$, with \mathbf{x}_0 as in part (b). Show that $\mathbf{x}_k \to \mathbf{v}_1$ as k increases.

5.3 Diagonalization 283

- **28.** [M] Construct a random integer-valued 4×4 matrix A, and verify that A and A^T have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do Aand A^T have the same eigenvectors? Make the same analysis of a 5×5 matrix. Report the matrices and your conclusions.
- **29.** [M] Construct a random integer-valued 4×4 matrix A.
 - a. Reduce A to echelon form U with no row scaling, and use U in formula (1) (before Example 2) to compute det A. (If A happens to be singular, start over with a new random matrix.)
 - b. Compute the eigenvalues of A and the product of these eigenvalues (as accurately as possible).

c. List the matrix A, and, to four decimal places, list the pivots in U and the eigenvalues of A. Compute det A with your matrix program, and compare it with the products you found in (a) and (b).

30. [**M**] Let $A = \begin{bmatrix} -6 & 28 & 21 \\ 4 & -15 & -12 \\ -8 & a & 25 \end{bmatrix}$. For each value of *a* in

the set {32, 31.9, 31.8, 32.1, 32.2}, compute the characteristic polynomial of A and the eigenvalues. In each case, create a graph of the characteristic polynomial $p(t) = \det (A - tI)$ for 0 < t < 3. If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues as a changes.

SOLUTION TO PRACTICE PROBLEM

0

The characteristic equation is

$$= \det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & -4 \\ 4 & 2 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)(2 - \lambda) - (-4)(4) = \lambda^2 - 3\lambda + 18$$

From the quadratic formula,

$$\lambda = \frac{3 \pm \sqrt{(-3)^2 - 4(18)}}{2} = \frac{3 \pm \sqrt{-63}}{2}$$

It is clear that the characteristic equation has no real solutions, so A has no real eigenvalues. The matrix A is acting on the real vector space \mathbb{R}^2 , and there is no nonzero vector \mathbf{v} in \mathbb{R}^2 such that $A\mathbf{v} = \lambda \mathbf{v}$ for some scalar λ .

DIAGONALIZATION

In many cases, the eigenvalue-eigenvector information contained within a matrix A can be displayed in a useful factorization of the form $A = PDP^{-1}$ where D is a diagonal matrix. In this section, the factorization enables us to compute A^k quickly for large values of k, a fundamental idea in several applications of linear algebra. Later, in Sections 5.6 and 5.7, the factorization will be used to analyze (and *decouple*) dynamical systems.

The following example illustrates that powers of a diagonal matrix are easy to compute.

EXAMPLE 1 If
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
, then $D^2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix}$
and
 $D^3 = DD^2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix} = \begin{bmatrix} 5^3 & 0 \\ 0 & 3^3 \end{bmatrix}$

In general,

aı

$$D^{k} = \begin{bmatrix} 5^{k} & 0\\ 0 & 3^{k} \end{bmatrix} \quad \text{for } k \ge 1$$

If $A = PDP^{-1}$ for some invertible P and diagonal D, then A^k is also easy to compute, as the next example shows.