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This explicit formula for xk gives the solution of the difference equation xkC1 D Axk .

As k ! 1, .:92/k tends to zero and xk tends to

�
:375

:625

�
D :125v1.

The calculations in Example 5 have an interesting application to a Markov chain
discussed in Section 4.9. Those who read that section may recognize that matrix A

in Example 5 above is the same as the migration matrix M in Section 4.9, x0 is the
initial population distribution between city and suburbs, and xk represents the population
distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence xk tends
to a steady-state vector. Now we know why the xk behave this way, at least for the
migration matrix. The steady-state vector is :125v1, a multiple of the eigenvector v1,
and formula (5) for xk shows precisely why xk ! :125v1.

NUMER ICAL NOTES

1. Computer software such as Mathematica and Maple can use symbolic calcu-
lations to find the characteristic polynomial of a moderate-sized matrix. But
there is no formula or finite algorithm to solve the characteristic equation of a
general n � n matrix for n � 5.

2. The best numerical methods for finding eigenvalues avoid the characteristic
polynomial entirely. In fact, MATLAB finds the characteristic polynomial
of a matrix A by first computing the eigenvalues �1; : : : ; �n of A and then
expanding the product .� � �1/.� � �2/ � � � .� � �n/.

3. Several common algorithms for estimating the eigenvalues of a matrix A

are based on Theorem 4. The powerful QR algorithm is discussed in the
exercises. Another technique, called Jacobi’s method, works when A D AT

and computes a sequence of matrices of the form

A1 D A and AkC1 D P �1
k AkPk .k D 1; 2; : : :/

Each matrix in the sequence is similar to A and so has the same eigenvalues
as A. The nondiagonal entries of AkC1 tend to zero as k increases, and the
diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

PRACTICE PROBLEM

Find the characteristic equation and eigenvalues of A D
�

1 �4

4 2

�
.

5.2 EXERCISES
Find the characteristic polynomial and the eigenvalues of the
matrices in Exercises 1–8.

1.

�
2 7

7 2

�
2.

�
5 3

3 5

�

3.

�
3 �2

1 �1

�
4.

�
5 �3

�4 3

�

5.

�
2 1

�1 4

�
6.

�
3 �4

4 8

�

7.

�
5 3

�4 4

�
8.

�
7 �2

2 3

�

Exercises 9–14 require techniques from Section 3.1. Find the
characteristic polynomial of each matrix, using either a cofactor
expansion or the special formula for 3 � 3 determinants described
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prior to Exercises 15–18 in Section 3.1. [Note: Finding the char-
acteristic polynomial of a 3 � 3 matrix is not easy to do with just
row operations, because the variable � is involved.]

9.

2
4

1 0 �1

2 3 �1

0 6 0

3
5 10.

2
4

0 3 1

3 0 2

1 2 0

3
5

11.

2
4

4 0 0

5 3 2

�2 0 2

3
5 12.

2
4

�1 0 1

�3 4 1

0 0 2

3
5

13.

2
4

6 �2 0

�2 9 0

5 8 3

3
5 14.

2
4

5 �2 3

0 1 0

6 7 �2

3
5

For the matrices in Exercises 15–17, list the eigenvalues, repeated
according to their multiplicities.

15.

2
664

4 �7 0 2

0 3 �4 6

0 0 3 �8

0 0 0 1

3
775 16.

2
664

5 0 0 0

8 �4 0 0

0 7 1 0

1 �5 2 1

3
775

17.

2
66664

3 0 0 0 0

�5 1 0 0 0

3 8 0 0 0

0 �7 2 1 0

�4 1 9 �2 3

3
77775

18. It can be shown that the algebraic multiplicity of an eigen-
value � is always greater than or equal to the dimension of the
eigenspace corresponding to �. Find h in the matrix A below
such that the eigenspace for � D 5 is two-dimensional:

A D

2
664

5 �2 6 �1

0 3 h 0

0 0 5 4

0 0 0 1

3
775

19. Let A be an n � n matrix, and suppose A has n real eigenval-
ues, �1; : : : ; �n, repeated according to multiplicities, so that

det.A � �I / D .�1 � �/.�2 � �/ � � � .�n � �/

Explain why det A is the product of the n eigenvalues of
A. (This result is true for any square matrix when complex
eigenvalues are considered.)

20. Use a property of determinants to show that A and AT have
the same characteristic polynomial.

In Exercises 21 and 22, A and B are n � n matrices. Mark each
statement True or False. Justify each answer.

21. a. The determinant of A is the product of the diagonal entries
in A.

b. An elementary row operation on A does not change the
determinant.

c. .det A/.det B/ D det AB

d. If � C 5 is a factor of the characteristic polynomial of A,
then 5 is an eigenvalue of A.

22. a. If A is 3 � 3, with columns a1, a2, and a3, then det A

equals the volume of the parallelepiped determined by a1,
a2 and a3.

b. det AT D .�1/ det A.

c. The multiplicity of a root r of the characteristic equation
of A is called the algebraic multiplicity of r as an eigen-
value of A.

d. A row replacement operation on A does not change the
eigenvalues.

A widely used method for estimating eigenvalues of a general
matrix A is the QR algorithm. Under suitable conditions, this al-
gorithm produces a sequence of matrices, all similar to A, that be-
come almost upper triangular, with diagonal entries that approach
the eigenvalues of A. The main idea is to factor A (or another
matrix similar to A) in the form A D Q1R1, where QT

1 D Q�1
1

and R1 is upper triangular. The factors are interchanged to form
A1 D R1Q1, which is again factored as A1 D Q2R2; then to form
A2 D R2Q2, and so on. The similarity of A; A1; : : : follows from
the more general result in Exercise 23.

23. Show that if A D QR with Q invertible, then A is similar to
A1 D RQ.

24. Show that if A and B are similar, then det A D det B .

25. Let A D
�

:6 :3

:4 :7

�
, v1 D

�
3=7

4=7

�
, x0 D

�
:5

:5

�
. [Note: A is

the stochastic matrix studied in Example 5 of Section 4.9.]

a. Find a basis for R2 consisting of v1 and another eigenvec-
tor v2 of A.

b. Verify that x0 may be written in the form x0 D v1 C cv2.

c. For k D 1; 2; : : : ; define xk D Akx0. Compute x1 and x2,
and write a formula for xk . Then show that xk ! v1 as k

increases.

26. Let A D
�

a b

c d

�
. Use formula (1) for a determinant

(given before Example 2) to show that det A D ad � bc.
Consider two cases: a ¤ 0 and a D 0.

27. Let A D
2
4

:5 :2 :3

:3 :8 :3

:2 0 :4

3
5, v1 D

2
4

:3

:6

:1

3
5, v2 D

2
4

1

�3

2

3
5,

v3 D
2
4

�1

0

1

3
5, and w D

2
4

1

1

1

3
5.

a. Show that v1, v2, and v3 are eigenvectors of A. [Note: A is
the stochastic matrix studied in Example 3 of Section 4.9.]

b. Let x0 be any vector in R3 with nonnegative entries whose
sum is 1. (In Section 4.9, x0 was called a probability
vector.) Explain why there are constants c1, c2, and c3

such that x0 D c1v1 C c2v2 C c3v3. Compute wT x0, and
deduce that c1 D 1.

c. For k D 1; 2; : : : ; define xk D Akx0, with x0 as in part
(b). Show that xk ! v1 as k increases.
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28. [M] Construct a random integer-valued 4 � 4 matrix A, and
verify that A and AT have the same characteristic polynomial
(the same eigenvalues with the same multiplicities). Do A

and AT have the same eigenvectors? Make the same analysis
of a 5 � 5 matrix. Report the matrices and your conclusions.

29. [M] Construct a random integer-valued 4 � 4 matrix A.

a. Reduce A to echelon form U with no row scaling, and use
U in formula (1) (before Example 2) to compute det A. (If
A happens to be singular, start over with a new random
matrix.)

b. Compute the eigenvalues of A and the product of these
eigenvalues (as accurately as possible).

c. List the matrix A, and, to four decimal places, list the
pivots in U and the eigenvalues of A. Compute det A with
your matrix program, and compare it with the products
you found in (a) and (b).

30. [M] Let A D
2
4

�6 28 21

4 �15 �12

�8 a 25

3
5. For each value of a in

the set f32; 31:9; 31:8; 32:1; 32:2g, compute the characteris-
tic polynomial of A and the eigenvalues. In each case, create
a graph of the characteristic polynomial p.t/ D det .A � tI /

for 0 � t � 3. If possible, construct all graphs on one coordi-
nate system. Describe how the graphs reveal the changes in
the eigenvalues as a changes.

SOLUTION TO PRACTICE PROBLEM

The characteristic equation is

0 D det.A � �I / D det

�
1 � � �4

4 2 � �

�

D .1 � �/.2 � �/ � .�4/.4/ D �2 � 3� C 18

From the quadratic formula,

� D 3 ˙
p

.�3/2 � 4.18/

2
D 3 ˙ p�63

2

It is clear that the characteristic equation has no real solutions, so A has no real
eigenvalues. The matrix A is acting on the real vector space R2, and there is no nonzero
vector v in R2 such that Av D �v for some scalar �.

5.3 DIAGONALIZATION

In many cases, the eigenvalue–eigenvector information contained within a matrix A can
be displayed in a useful factorization of the form A D PDP�1 where D is a diagonal ma-
trix. In this section, the factorization enables us to compute Ak quickly for large values
of k, a fundamental idea in several applications of linear algebra. Later, in Sections 5.6
and 5.7, the factorization will be used to analyze (and decouple) dynamical systems.

The following example illustrates that powers of a diagonal matrix are easy to
compute.

EXAMPLE 1 If D D
�

5 0

0 3

�
, then D2 D

�
5 0

0 3

��
5 0

0 3

�
D

�
52 0

0 32

�

and

D3 D DD2 D
�

5 0

0 3

� �
52 0

0 32

�
D

�
53 0

0 33

�

In general,

Dk D
�

5k 0

0 3k

�
for k � 1

If A D PDP�1 for some invertible P and diagonal D, then Ak is also easy to
compute, as the next example shows.
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