Eigenvectors and Difference Equations

This section concludes by showing how to construct solutions of the first-order difference equation discussed in the chapter introductory example:

$$
\begin{equation*}
\mathbf{x}_{k+1}=A \mathbf{x}_{k} \quad(k=0,1,2, \ldots) \tag{8}
\end{equation*}
$$

If A is an $n \times n$ matrix, then (8) is a recursive description of a sequence $\left\{\mathbf{x}_{k}\right\}$ in \mathbb{R}^{n}. A solution of (8) is an explicit description of $\left\{\mathbf{x}_{k}\right\}$ whose formula for each \mathbf{x}_{k} does not depend directly on A or on the preceding terms in the sequence other than the initial term \mathbf{x}_{0}.

The simplest way to build a solution of (8) is to take an eigenvector \mathbf{x}_{0} and its corresponding eigenvalue λ and let

$$
\begin{equation*}
\mathbf{x}_{k}=\lambda^{k} \mathbf{x}_{0} \quad(k=1,2, \ldots) \tag{9}
\end{equation*}
$$

This sequence is a solution because

$$
A \mathbf{x}_{k}=A\left(\lambda^{k} \mathbf{x}_{0}\right)=\lambda^{k}\left(A \mathbf{x}_{0}\right)=\lambda^{k}\left(\lambda \mathbf{x}_{0}\right)=\lambda^{k+1} \mathbf{x}_{0}=\mathbf{x}_{k+1}
$$

Linear combinations of solutions in the form of equation (9) are solutions, too! See Exercise 33.

PRACTICE PROBLEMS

1. Is 5 an eigenvalue of $A=\left[\begin{array}{rrr}6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6\end{array}\right]$?
2. If \mathbf{x} is an eigenvector of A corresponding to λ, what is $A^{3} \mathbf{x}$?
3. Suppose that \mathbf{b}_{1} and \mathbf{b}_{2} are eigenvectors corresponding to distinct eigenvalues λ_{1} and λ_{2}, respectively, and suppose that \mathbf{b}_{3} and \mathbf{b}_{4} are linearly independent eigenvectors corresponding to a third distinct eigenvalue λ_{3}. Does it necessarily follow that $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ is a linearly independent set? [Hint: Consider the equation $c_{1} \mathbf{b}_{1}+$ $c_{2} \mathbf{b}_{2}+\left(c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}\right)=\mathbf{0}$.]
4. If A is an $n \times n$ matrix and λ is an eigenvalue of A, show that 2λ is an eigenvalue of $2 A$.

5.1 EXERCISES

1. Is $\lambda=2$ an eigenvalue of $\left[\begin{array}{ll}3 & 2 \\ 3 & 8\end{array}\right]$? Why or why not?
2. Is $\lambda=-2$ an eigenvalue of $\left[\begin{array}{rr}7 & 3 \\ 3 & -1\end{array}\right]$? Why or why not?
3. Is $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ an eigenvector of $\left[\begin{array}{ll}-3 & 1 \\ -3 & 8\end{array}\right]$? If so, find the eigen-
value.
4. Is $\left[\begin{array}{c}-1+\sqrt{2} \\ 1\end{array}\right]$ an eigenvector of $\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]$? If so, find the
eigenvalue.
5. Is $\left[\begin{array}{r}4 \\ -3 \\ 1\end{array}\right]$ an eigenvector of $\left[\begin{array}{rrr}3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4\end{array}\right]$? If so, find
the eigenvalue.
6. Is $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$ an eigenvector of $\left[\begin{array}{lll}3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5\end{array}\right]$? If so, find the eigenvalue.
7. Is $\lambda=4$ an eigenvalue of $\left[\begin{array}{rrr}3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5\end{array}\right]$? If so, find one corresponding eigenvector.
8. Is $\lambda=3$ an eigenvalue of $\left[\begin{array}{rrr}1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1\end{array}\right]$? If so, find one corresponding eigenvector.

In Exercises 9-16, find a basis for the eigenspace corresponding to each listed eigenvalue.
9. $A=\left[\begin{array}{ll}5 & 0 \\ 2 & 1\end{array}\right], \lambda=1,5$
10. $A=\left[\begin{array}{rr}10 & -9 \\ 4 & -2\end{array}\right], \lambda=4$
11. $A=\left[\begin{array}{rr}4 & -2 \\ -3 & 9\end{array}\right], \lambda=10$
12. $A=\left[\begin{array}{rr}7 & 4 \\ -3 & -1\end{array}\right], \lambda=1,5$
13. $A=\left[\begin{array}{rrr}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right], \lambda=1,2,3$
14. $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1\end{array}\right], \lambda=-2$
15. $A=\left[\begin{array}{rrr}4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9\end{array}\right], \lambda=3$
16. $A=\left[\begin{array}{llll}3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4\end{array}\right], \lambda=4$

Find the eigenvalues of the matrices in Exercises 17 and 18.
17. $\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1\end{array}\right]$
18. $\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -3\end{array}\right]$
19. For $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$, find one eigenvalue, with no calculation. Justify your answer.
20. Without calculation, find one eigenvalue and two linearly independent eigenvectors of $A=\left[\begin{array}{lll}5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5\end{array}\right]$. Justify your answer.

In Exercises 21 and 22, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer.
21. a. If $A \mathbf{x}=\lambda \mathbf{x}$ for some vector \mathbf{x}, then λ is an eigenvalue of A.
b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
c. A number c is an eigenvalue of A if and only if the equation $(A-c I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
d. Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is easy.
e. To find the eigenvalues of A, reduce A to echelon form.
22. a. If $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ, then \mathbf{x} is an eigenvector of A.
b. If \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
c. A steady-state vector for a stochastic matrix is actually an eigenvector.
d. The eigenvalues of a matrix are on its main diagonal.
e. An eigenspace of A is a null space of a certain matrix.
23. Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.
24. Construct an example of a 2×2 matrix with only one distinct eigenvalue
25. Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1}. [Hint: Suppose a nonzero \mathbf{x} satisfies $A \mathbf{x}=\lambda \mathbf{x}$.]
26. Show that if A^{2} is the zero matrix, then the only eigenvalue of A is 0 .
27. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^{T}. [Hint: Find out how $A-\lambda I$ and $A^{T}-\lambda I$ are related.]
28. Use Exercise 27 to complete the proof of Theorem 1 for the case when A is lower triangular.
29. Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Find an eigenvector.]
30. Consider an $n \times n$ matrix A with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear transformation T. Without writing A, find an eigenvalue of A and describe the eigenspace.
31. T is the transformation on \mathbb{R}^{2} that reflects points across some line through the origin.
32. T is the transformation on \mathbb{R}^{3} that rotates points about some line through the origin.
33. Let \mathbf{u} and \mathbf{v} be eigenvectors of a matrix A, with corresponding eigenvalues λ and μ, and let c_{1} and c_{2} be scalars. Define
$\mathbf{x}_{k}=c_{1} \lambda^{k} \mathbf{u}+c_{2} \mu^{k} \mathbf{v} \quad(k=0,1,2, \ldots)$
a. What is \mathbf{x}_{k+1}, by definition?
b. Compute $A \mathbf{x}_{k}$ from the formula for \mathbf{x}_{k}, and show that $A \mathbf{x}_{k}=\mathbf{x}_{k+1}$. This calculation will prove that the sequence $\left\{\mathbf{x}_{k}\right\}$ defined above satisfies the difference equation $\mathbf{x}_{k+1}=A \mathbf{x}_{k}(k=0,1,2, \ldots)$.
34. Describe how you might try to build a solution of a difference equation $\mathbf{x}_{k+1}=A \mathbf{x}_{k}(k=0,1,2, \ldots)$ if you were given the initial \mathbf{x}_{0} and this vector did not happen to be an eigenvector of A. [Hint: How might you relate \mathbf{x}_{0} to eigenvectors of A ?]
35. Let \mathbf{u} and \mathbf{v} be the vectors shown in the figure, and suppose \mathbf{u} and \mathbf{v} are eigenvectors of a 2×2 matrix A that correspond to eigenvalues 2 and 3 , respectively. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$ for each \mathbf{x} in \mathbb{R}^{2}, and let $\mathbf{w}=\mathbf{u}+\mathbf{v}$. Make a copy of the figure, and on the same coordinate system, carefully plot the vectors $T(\mathbf{u})$, $T(\mathbf{v})$, and $T(\mathbf{w})$.

36. Repeat Exercise 35, assuming \mathbf{u} and \mathbf{v} are eigenvectors of A that correspond to eigenvalues -1 and 3 , respectively.
[\mathbf{M}] In Exercises 37-40, use a matrix program to find the eigenvalues of the matrix. Then use the method of Example 4 with a row reduction routine to produce a basis for each eigenspace.
37. $\left[\begin{array}{rrr}8 & -10 & -5 \\ 2 & 17 & 2 \\ -9 & -18 & 4\end{array}\right]$
38. $\left[\begin{array}{rrrr}9 & -4 & -2 & -4 \\ -56 & 32 & -28 & 44 \\ -14 & -14 & 6 & -14 \\ 42 & -33 & 21 & -45\end{array}\right]$
39. $\left[\begin{array}{rrrrr}4 & -9 & -7 & 8 & 2 \\ -7 & -9 & 0 & 7 & 14 \\ 5 & 10 & 5 & -5 & -10 \\ -2 & 3 & 7 & 0 & 4 \\ -3 & -13 & -7 & 10 & 11\end{array}\right]$
40. $\left[\begin{array}{rrrrr}-4 & -4 & 20 & -8 & -1 \\ 14 & 12 & 46 & 18 & 2 \\ 6 & 4 & -18 & 8 & 1 \\ 11 & 7 & -37 & 17 & 2 \\ 18 & 12 & -60 & 24 & 5\end{array}\right]$

SOLUTIONS TO PRACTICE PROBLEMS

1. The number 5 is an eigenvalue of A if and only if the equation $(A-5 I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution. Form

$$
A-5 I=\left[\begin{array}{rrr}
6 & -3 & 1 \\
3 & 0 & 5 \\
2 & 2 & 6
\end{array}\right]-\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]=\left[\begin{array}{rrr}
1 & -3 & 1 \\
3 & -5 & 5 \\
2 & 2 & 1
\end{array}\right]
$$

and row reduce the augmented matrix:

$$
\left[\begin{array}{rrrr}
1 & -3 & 1 & 0 \\
3 & -5 & 5 & 0 \\
2 & 2 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 8 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 0 & -5 & 0
\end{array}\right]
$$

At this point, it is clear that the homogeneous system has no free variables. Thus $A-5 I$ is an invertible matrix, which means that 5 is not an eigenvalue of A.
2. If \mathbf{x} is an eigenvector of A corresponding to λ, then $A \mathbf{x}=\lambda \mathbf{x}$ and so

$$
A^{2} \mathbf{x}=A(\lambda \mathbf{x})=\lambda A \mathbf{x}=\lambda^{2} \mathbf{x}
$$

Again, $A^{3} \mathbf{x}=A\left(A^{2} \mathbf{x}\right)=A\left(\lambda^{2} \mathbf{x}\right)=\lambda^{2} A \mathbf{x}=\lambda^{3} \mathbf{x}$. The general pattern, $A^{k} \mathbf{x}=\lambda^{k} \mathbf{x}$, is proved by induction.
3. Yes. Suppose $c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\left(c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}\right)=\mathbf{0}$. Since any linear combination of eigenvectors corresponding to the same eigenvalue is in the eigenspace for that eigenvalue, $c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}$ is either $\mathbf{0}$ or an eigenvector for λ_{3}. If $c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}$ were an eigenvector for λ_{3}, then by Theorem $2,\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}\right\}$ would be a linearly independent set, which would force $c_{1}=c_{2}=0$ and $c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}=\mathbf{0}$, contradicting that $c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}$ is an eigenvector. Thus $c_{3} \mathbf{b}_{3}+c_{4} \mathbf{b}_{4}$ must be $\mathbf{0}$, implying that $c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}=\mathbf{0}$ also. By Theorem 2, $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ is a linearly independent set so $c_{1}=c_{2}=0$. Moreover, $\left\{\mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ is a linearly independent set so $c_{3}=c_{4}=0$. Since all of the coefficients c_{1}, c_{2}, c_{3}, and c_{4} must be zero, it follows that $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ is a linearly independent set.

