Eigenvectors and Difference Equations

This section concludes by showing how to construct solutions of the first-order difference equation discussed in the chapter introductory example:

$$\mathbf{x}_{k+1} = A\mathbf{x}_k \quad (k = 0, 1, 2, \ldots)$$
 (8)

If *A* is an $n \times n$ matrix, then (8) is a *recursive* description of a sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n . A **solution** of (8) is an explicit description of $\{\mathbf{x}_k\}$ whose formula for each \mathbf{x}_k does not depend directly on *A* or on the preceding terms in the sequence other than the initial term \mathbf{x}_0 .

The simplest way to build a solution of (8) is to take an eigenvector \mathbf{x}_0 and its corresponding eigenvalue λ and let

$$\mathbf{x}_k = \lambda^k \mathbf{x}_0 \quad (k = 1, 2, \ldots) \tag{9}$$

This sequence is a solution because

$$A\mathbf{x}_{k} = A(\lambda^{k}\mathbf{x}_{0}) = \lambda^{k}(A\mathbf{x}_{0}) = \lambda^{k}(\lambda\mathbf{x}_{0}) = \lambda^{k+1}\mathbf{x}_{0} = \mathbf{x}_{k+1}$$

Linear combinations of solutions in the form of equation (9) are solutions, too! See Exercise 33.

PRACTICE PROBLEMS

- **1.** Is 5 an eigenvalue of $A = \begin{bmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix}$?
- **2.** If **x** is an eigenvector of A corresponding to λ , what is A^3 **x**?
- 3. Suppose that \mathbf{b}_1 and \mathbf{b}_2 are eigenvectors corresponding to distinct eigenvalues λ_1 and λ_2 , respectively, and suppose that \mathbf{b}_3 and \mathbf{b}_4 are linearly independent eigenvectors corresponding to a third distinct eigenvalue λ_3 . Does it necessarily follow that $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4\}$ is a linearly independent set? [*Hint:* Consider the equation $c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + (c_3\mathbf{b}_3 + c_4\mathbf{b}_4) = \mathbf{0}$.]
- 4. If A is an $n \times n$ matrix and λ is an eigenvalue of A, show that 2λ is an eigenvalue of 2A.

5.1 EXERCISES

1.	Is $\lambda = 2$ an eigenvalue of $\begin{bmatrix} 3 & 2\\ 3 & 8 \end{bmatrix}$? Why or why not?	6. Is $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 2 & 5 & 7 \end{bmatrix}$? If so, find the
2.	Is $\lambda = -2$ an eigenvalue of $\begin{bmatrix} 7 & 3\\ 3 & -1 \end{bmatrix}$? Why or why not?	L I L 5 6 5 L eigenvalue.
3.	Is $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$? If so, find the eigen-	7. Is $\lambda = 4$ an eigenvalue of $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find one
4.	value. Is $\begin{bmatrix} -1 + \sqrt{2} \\ 1 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$? If so, find the	corresponding eigenvector. $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$
	eigenvalue.	8. Is $\lambda = 3$ an eigenvalue of $\begin{vmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \end{vmatrix}$? If so, find one
5.	Is $\begin{bmatrix} 4 \\ -3 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \end{bmatrix}$? If so, find	corresponding eigenvector.
	$\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & 4 \end{bmatrix}$ the eigenvalue.	In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

T

274 CHAPTER 5 Eigenvalues and Eigenvectors

9. $A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}, \lambda = 1, 5$ 10. $A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}, \lambda = 4$ 11. $A = \begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}, \lambda = 10$ 12. $A = \begin{bmatrix} 7 & 4 \\ -3 & -1 \end{bmatrix}, \lambda = 1, 5$ 13. $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \lambda = 1, 2, 3$ 14. $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{bmatrix}, \lambda = -2$ 15. $A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}, \lambda = 3$ 16. $A = \begin{bmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \lambda = 4$

Find the eigenvalues of the matrices in Exercises 17 and 18.

	0	0	0		4	0	0	
17.	0	2	5	18.	0	0	0	
	0	0	-1		1	0	-3	

19. For $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$, find one eigenvalue, with no cal-

culation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly independent eigenvectors of $A = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$. Justify your answer.

In Exercises 21 and 22, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer.

- **21.** a. If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} , then λ is an eigenvalue of A.
 - b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
 - c. A number c is an eigenvalue of A if and only if the equation $(A cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

- d. Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is easy.
- e. To find the eigenvalues of A, reduce A to echelon form.
- **22.** a. If $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector of A.
 - b. If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
 - c. A steady-state vector for a stochastic matrix is actually an eigenvector.
 - d. The eigenvalues of a matrix are on its main diagonal.
 - e. An eigenspace of A is a null space of a certain matrix.
- 23. Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most *n* distinct eigenvalues.
- 24. Construct an example of a 2×2 matrix with only one distinct eigenvalue.
- **25.** Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [*Hint:* Suppose a nonzero **x** satisfies A**x** = λ **x**.]
- **26.** Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.
- **27.** Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T . [*Hint:* Find out how $A \lambda I$ and $A^T \lambda I$ are related.]
- **28.** Use Exercise 27 to complete the proof of Theorem 1 for the case when *A* is lower triangular.
- **29.** Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [*Hint:* Find an eigenvector.]
- **30.** Consider an $n \times n$ matrix A with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A. [*Hint:* Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear transformation T. Without writing A, find an eigenvalue of A and describe the eigenspace.

- **31.** *T* is the transformation on \mathbb{R}^2 that reflects points across some line through the origin.
- **32.** *T* is the transformation on \mathbb{R}^3 that rotates points about some line through the origin.
- **33.** Let **u** and **v** be eigenvectors of a matrix A, with corresponding eigenvalues λ and μ , and let c_1 and c_2 be scalars. Define

$$\mathbf{x}_k = c_1 \lambda^k \mathbf{u} + c_2 \mu^k \mathbf{v} \quad (k = 0, 1, 2, \ldots)$$

- a. What is \mathbf{x}_{k+1} , by definition?
- b. Compute $A\mathbf{x}_k$ from the formula for \mathbf{x}_k , and show that $A\mathbf{x}_k = \mathbf{x}_{k+1}$. This calculation will prove that the sequence $\{\mathbf{x}_k\}$ defined above satisfies the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$ (k = 0, 1, 2, ...).

5.1 Eigenvectors and Eigenvalues 275

[**M**] In Exercises 37–40, use a matrix program to find the eigenvalues of the matrix. Then use the method of Example 4 with a

- 34. Describe how you might try to build a solution of a difference equation x_{k+1} = Ax_k (k = 0, 1, 2, ...) if you were given the initial x₀ and this vector did not happen to be an eigenvector of A. [*Hint:* How might you relate x₀ to eigenvectors of A?]
- **35.** Let **u** and **v** be the vectors shown in the figure, and suppose **u** and **v** are eigenvectors of a 2×2 matrix *A* that correspond to eigenvalues 2 and 3, respectively. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$ for each **x** in \mathbb{R}^2 , and let $\mathbf{w} = \mathbf{u} + \mathbf{v}$. Make a copy of the figure, and on the same coordinate system, carefully plot the vectors $T(\mathbf{u})$, $T(\mathbf{v})$, and $T(\mathbf{w})$.

36. Repeat Exercise 35, assuming **u** and **v** are eigenvectors of *A* that correspond to eigenvalues -1 and 3, respectively.

row r	eduction	on routine	o produ	uce a ba	sis for each eigenspace.
37.	$\begin{bmatrix} 8\\ 2\\ -9 \end{bmatrix}$	-10 - 17 - 17 - 18	5 2 4		
38.	$\begin{bmatrix} 9\\-56\\-14\\42 \end{bmatrix}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccc} -2 & -2 \\ 28 & 4 \\ 6 & -1 \\ 21 & -4 \\ \end{array} $	4 4 4 5	
39.	$\begin{bmatrix} 4\\ -7\\ 5\\ -2\\ -3 \end{bmatrix}$	$\begin{array}{rrrr} -9 & -7 \\ -9 & 0 \\ 10 & 5 \\ 3 & 7 \\ -13 & -7 \end{array}$	8 7 -5 0 10	$2 \\ 14 \\ -10 \\ 4 \\ 11 $	
40.	$ \begin{bmatrix} -4 \\ 14 \\ 6 \\ 11 \\ 18 \end{bmatrix} $	$ \begin{array}{rrrr} -4 & 20 \\ 12 & 46 \\ 4 & -18 \\ 7 & -37 \\ 12 & -60 \end{array} $	8 18 8 17 24	-1 -1 -2 1 2 2 5	

SOLUTIONS TO PRACTICE PROBLEMS

1. The number 5 is an eigenvalue of A if and only if the equation $(A - 5I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution. Form

	6	-3	1		5	0	0		[1]	-3	1	
A - 5I =	3	0	5	_	0	5	0	=	3	-5	5	
	2	2	6		0	0	5		2	2	1	

and row reduce the augmented matrix:

1	-3	1	0		[1]	-3	1	0		[1]	-3	1	0
3	-5	5	0	\sim	0	4	2	0	\sim	0	4	2	0
2	2	1	0		0	8	-1	0		0	0	-5	0

At this point, it is clear that the homogeneous system has no free variables. Thus A - 5I is an invertible matrix, which means that 5 is *not* an eigenvalue of A.

2. If **x** is an eigenvector of A corresponding to λ , then $A\mathbf{x} = \lambda \mathbf{x}$ and so

$$A^2 \mathbf{x} = A(\lambda \mathbf{x}) = \lambda A \mathbf{x} = \lambda^2 \mathbf{x}$$

Again, $A^3 \mathbf{x} = A(A^2 \mathbf{x}) = A(\lambda^2 \mathbf{x}) = \lambda^2 A \mathbf{x} = \lambda^3 \mathbf{x}$. The general pattern, $A^k \mathbf{x} = \lambda^k \mathbf{x}$, is proved by induction.

3. Yes. Suppose c₁b₁ + c₂b₂ + (c₃b₃ + c₄b₄) = 0. Since any linear combination of eigenvectors corresponding to the same eigenvalue is in the eigenspace for that eigenvalue, c₃b₃ + c₄b₄ is either 0 or an eigenvector for λ₃. If c₃b₃ + c₄b₄ were an eigenvector for λ₃, then by Theorem 2, {b₁, b₂, c₃b₃ + c₄b₄} would be a linearly independent set, which would force c₁ = c₂ = 0 and c₃b₃ + c₄b₄ = 0, contradicting that c₃b₃ + c₄b₄ is an eigenvector. Thus c₃b₃ + c₄b₄ must be 0, implying that c₁b₁ + c₂b₂ = 0 also. By Theorem 2, {b₁, b₂} is a linearly independent set so c₃ = c₄ = 0. Since all of the coefficients c₁, c₂, c₃, and c₄ must be zero, it follows that {b₁, b₂, b₃, b₄} is a linearly independent set.