EXAMPLE 3 Let $\mathbf{b}_{1}=\left[\begin{array}{r}1 \\ -3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}-2 \\ 4\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{r}-7 \\ 9\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{r}-5 \\ 7\end{array}\right]$, and consider the bases for \mathbb{R}^{2} given by $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$.
a. Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.
b. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.

SOLUTION

a. Notice that ${ }_{\mathcal{B} \leftarrow \mathcal{C}}^{P}$ is needed rather than $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$, and compute

$$
\left[\begin{array}{ll:ll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{c}_{1} & \mathbf{c}_{2}
\end{array}\right]=\left[\begin{array}{rr:rr}
1 & -2 & -7 & -5 \\
-3 & 4 & 9 & 7
\end{array}\right] \sim\left[\begin{array}{ll:ll}
1 & 0 & 5 & 3 \\
0 & 1 & 6 & 4
\end{array}\right]
$$

So

$$
\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=\left[\begin{array}{ll}
5 & 3 \\
6 & 4
\end{array}\right]
$$

b. By part (a) and property (6) above (with \mathcal{B} and \mathcal{C} interchanged),

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left({ }_{\mathcal{B} \leftarrow C} P^{P}\right)^{-1}=\frac{1}{2}\left[\begin{array}{rr}
4 & -3 \\
-6 & 5
\end{array}\right]=\left[\begin{array}{rr}
2 & -3 / 2 \\
-3 & 5 / 2
\end{array}\right]
$$

Another description of the change-of-coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{ }$ uses the change-ofcoordinate matrices $P_{\mathcal{B}}$ and $P_{\mathcal{C}}$ that convert \mathcal{B}-coordinates and \mathcal{C}-coordinates, respectively, into standard coordinates. Recall that for each \mathbf{x} in \mathbb{R}^{n},

$$
P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}=\mathbf{x}, \quad P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}}=\mathbf{x}, \quad \text { and } \quad[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C}}^{-1} \mathbf{x}
$$

Thus

$$
[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C}}^{-1} \mathbf{x}=P_{\mathcal{C}}^{-1} P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

In \mathbb{R}^{n}, the change-of-coordinates matrix ${ }_{\mathcal{C}} P_{\mathcal{B}}$ may be computed as $P_{\mathcal{C}}^{-1} P_{\mathcal{B}}$. Actually, for matrices larger than 2×2, an algorithm analogous to the one in Example 3 is faster than computing $P_{\mathcal{C}}^{-1}$ and then $P_{\mathcal{C}}^{-1} P_{\mathcal{B}}$. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Let $\mathcal{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$ and $\mathcal{G}=\left\{\mathbf{g}_{1}, \mathbf{g}_{2}\right\}$ be bases for a vector space V, and let P be a matrix whose columns are $\left[\mathbf{f}_{1}\right]_{\mathcal{G}}$ and $\left[\mathbf{f}_{2}\right]_{\mathcal{G}}$. Which of the following equations is satisfied by P for all \mathbf{v} in V ?
(i) $[\mathbf{v}]_{\mathcal{F}}=P[\mathbf{v}]_{\mathcal{G}}$
(ii) $[\mathbf{v}]_{\mathcal{G}}=P[\mathbf{v}]_{\mathcal{F}}$
2. Let \mathcal{B} and \mathcal{C} be as in Example 1. Use the results of that example to find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.

4.7 EXERCISES

1. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be bases for a vector space V, and suppose $\mathbf{b}_{1}=6 \mathbf{c}_{1}-2 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=9 \mathbf{c}_{1}-4 \mathbf{c}_{2}$.
a. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
b. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x}=-3 \mathbf{b}_{1}+2 \mathbf{b}_{2}$. Use part (a).
2. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be bases for a vector space V, and suppose $\mathbf{b}_{1}=-\mathbf{c}_{1}+4 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=5 \mathbf{c}_{1}-3 \mathbf{c}_{2}$.
a. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
b. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x}=5 \mathbf{b}_{1}+3 \mathbf{b}_{2}$.
3. Let $\mathcal{U}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\mathcal{W}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ be bases for V, and let P be a matrix whose columns are $\left[\mathbf{u}_{1}\right]_{\mathcal{W}}$ and $\left[\mathbf{u}_{2}\right]_{\mathcal{W}}$. Which of the following equations is satisfied by P for all \mathbf{x} in V ?
(i) $[\mathbf{x}]_{\mathcal{U}}=P[\mathbf{x}]_{\mathcal{W}}$
(ii) $[\mathbf{x}]_{\mathcal{W}}=P[\mathbf{x}]_{\mathcal{U}}$
4. Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ and $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ be bases for V, and let $P=\left[\begin{array}{lll}{\left[\mathbf{d}_{1}\right]_{\mathcal{A}}} & {\left[\mathbf{d}_{2}\right]_{\mathcal{A}}} & {\left[\mathbf{d}_{3}\right]_{\mathcal{A}}}\end{array}\right]$. Which of the following equations is satisfied by P for all \mathbf{x} in V ?
(i) $[\mathbf{x}]_{\mathcal{A}}=P[\mathbf{x}]_{\mathcal{D}}$
(ii) $[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{A}}$
5. Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be bases for a vector space V, and suppose $\mathbf{a}_{1}=4 \mathbf{b}_{1}-\mathbf{b}_{2}$, $\mathbf{a}_{2}=-\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}$, and $\mathbf{a}_{3}=\mathbf{b}_{2}-2 \mathbf{b}_{3}$.
a. Find the change-of-coordinates matrix from \mathcal{A} to \mathcal{B}.
b. Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=3 \mathbf{a}_{1}+4 \mathbf{a}_{2}+\mathbf{a}_{3}$.
6. Let $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ and $\mathcal{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ be bases for a vector space V, and suppose $\mathbf{f}_{1}=2 \mathbf{d}_{1}-\mathbf{d}_{2}+\mathbf{d}_{3}$, $\mathbf{f}_{2}=3 \mathbf{d}_{2}+\mathbf{d}_{3}$, and $\mathbf{f}_{3}=-3 \mathbf{d}_{1}+2 \mathbf{d}_{3}$.
a. Find the change-of-coordinates matrix from \mathcal{F} to \mathcal{D}.
b. Find $[\mathbf{x}]_{\mathcal{D}}$ for $\mathbf{x}=\mathbf{f}_{1}-2 \mathbf{f}_{2}+2 \mathbf{f}_{3}$.

In Exercises 7-10, let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be bases for \mathbb{R}^{2}. In each exercise, find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.
7. $\mathbf{b}_{1}=\left[\begin{array}{l}7 \\ 5\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}-3 \\ -1\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{r}1 \\ -5\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$
8. $\mathbf{b}_{1}=\left[\begin{array}{r}-1 \\ 8\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}1 \\ -5\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{l}1 \\ 4\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
9. $\mathbf{b}_{1}=\left[\begin{array}{l}-6 \\ -1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 0\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{r}2 \\ -1\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{r}6 \\ -2\end{array}\right]$
10. $\mathbf{b}_{1}=\left[\begin{array}{r}7 \\ -2\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}2 \\ -1\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{l}4 \\ 1\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$

In Exercises 11 and 12, \mathcal{B} and \mathcal{C} are bases for a vector space V. Mark each statement True or False. Justify each answer.
11. a. The columns of the change-of-coordinates matrix ${ }_{\mathcal{C}} P_{\mathcal{B}}$ are \mathcal{B}-coordinate vectors of the vectors in \mathcal{C}.
b. If $V=\mathbb{R}^{n}$ and \mathcal{C} is the standard basis for V, then $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is the same as the change-of-coordinates matrix $P_{\mathcal{B}}$ introduced in Section 4.4.
12. a. The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are linearly independent.
b. If $V=\mathbb{R}^{2}, \mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$, then row reduction of $\left[\begin{array}{llll}\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]$ to $\left[\begin{array}{ll}I & P\end{array}\right]$ produces a matrix P that satisfies $[\mathbf{x}]_{\mathcal{B}}=P[\mathbf{x}]_{\mathcal{C}}$ for all \mathbf{x} in V.
13. In \mathbb{P}_{2}, find the change-of-coordinates matrix from the basis $\mathcal{B}=\left\{1-2 t+t^{2}, 3-5 t+4 t^{2}, 2 t+3 t^{2}\right\}$ to the standard basis $\mathcal{C}=\left\{1, t, t^{2}\right\}$. Then find the \mathcal{B}-coordinate vector for $-1+2 t$.
14. In \mathbb{P}_{2}, find the change-of-coordinates matrix from the basis $\mathcal{B}=\left\{1-3 t^{2}, 2+t-5 t^{2}, 1+2 t\right\}$ to the standard basis. Then write t^{2} as a linear combination of the polynomials in \mathcal{B}.

Exercises 15 and 16 provide a proof of Theorem 15. Fill in a justification for each step.
15. Given \mathbf{v} in V, there exist scalars x_{1}, \ldots, x_{n}, such that
$\mathbf{v}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{n} \mathbf{b}_{n}$
because (a) \qquad Apply the coordinate mapping determined by the basis \mathcal{C}, and obtain
$[\mathbf{v}]_{\mathcal{C}}=x_{1}\left[\mathbf{b}_{1}\right]_{\mathcal{C}}+x_{2}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}+\cdots+x_{n}\left[\mathbf{b}_{n}\right]_{\mathcal{C}}$
because (b) \qquad .This equation may be written in the form
$\left[\begin{array}{llll}\mathbf{v}\end{array}\right]_{\mathcal{C}}=\left[\begin{array}{llll}{\left[\begin{array}{l}\mathbf{b}_{1}\end{array}\right]_{\mathcal{C}}} & {\left[\mathbf{b}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{n}\right]_{\mathcal{C}}}\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$
by the definition of (c) \qquad . This shows that the matrix $\underset{\mathcal{C} \leftarrow}{P_{\mathcal{B}}}$ shown in (5) satisfies [$\left.\mathbf{v}\right]_{\mathcal{C}}={ }_{\mathcal{C}}{ }_{\leftarrow}{ }_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}$ for each \mathbf{v} in V, because the vector on the right side of (8) is (d) \qquad -.
16. Suppose Q is any matrix such that
$[\mathbf{v}]_{\mathcal{C}}=Q[\mathbf{v}]_{\mathcal{B}} \quad$ for each \mathbf{v} in V
Set $\mathbf{v}=\mathbf{b}_{1}$ in (9). Then (9) shows that $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}$ is the first column of Q because (a) \qquad . Similarly, for $k=2, \ldots, n$, the k th column of Q is (b) \qquad because (c) \qquad . This shows that the matrix ${ }_{\mathcal{C}} P_{\mathcal{B}}$ defined by (5) in Theorem 15 is the only matrix that satisfies condition (4).
17. [M] Let $\mathcal{B}=\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{6}\right\}$ and $C=\left\{\mathbf{y}_{0}, \ldots, \mathbf{y}_{6}\right\}$, where \mathbf{x}_{k} is the function $\cos ^{k} t$ and \mathbf{y}_{k} is the function $\cos k t$. Exercise 34 in Section 4.5 showed that both \mathcal{B} and \mathcal{C} are bases for the vector space $H=\operatorname{Span}\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{6}\right\}$.
a. Set $P=\left[\begin{array}{lll}{\left[\mathbf{y}_{0}\right]_{\mathcal{B}}} & \cdots & {\left[\mathbf{y}_{6}\right]_{\mathcal{B}}}\end{array}\right]$, and calculate P^{-1}.
b. Explain why the columns of P^{-1} are the \mathcal{C}-coordinate vectors of $\mathbf{x}_{0}, \ldots, \mathbf{x}_{6}$. Then use these coordinate vectors to write trigonometric identities that express powers of $\cos t$ in terms of the functions in \mathcal{C}.
See the Study Guide.
18. $[\mathbf{M}]$ (Calculus required) ${ }^{3}$ Recall from calculus that integrals such as
$\int\left(5 \cos ^{3} t-6 \cos ^{4} t+5 \cos ^{5} t-12 \cos ^{6} t\right) d t$
are tedious to compute. (The usual method is to apply integration by parts repeatedly and use the half-angle formula.) Use the matrix P or P^{-1} from Exercise 17 to transform (10); then compute the integral.
${ }^{3}$ The idea for Exercises 17 and 18 and five related exercises in earlier sections came from a paper by Jack W. Rogers, Jr., of Auburn University, presented at a meeting of the International Linear Algebra Society,
August 1995. See "Applications of Linear Algebra in Calculus," American Mathematical Monthly 104 (1), 1997.
19. [M] Let
$P=\left[\begin{array}{rrr}1 & 2 & -1 \\ -3 & -5 & 0 \\ 4 & 6 & 1\end{array}\right]$,
$\mathbf{v}_{1}=\left[\begin{array}{r}-2 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-8 \\ 5 \\ 2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}-7 \\ 2 \\ 6\end{array}\right]$
a. Find a basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ for \mathbb{R}^{3} such that P is the change-of-coordinates matrix from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. [Hint: What do the columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ represent?]
b. Find a basis $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ for \mathbb{R}^{3} such that P is the change-of-coordinates matrix from $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ to $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$.
20. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$, and $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}\right\}$ be bases for a two-dimensional vector space.
a. Write an equation that relates the matrices $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P},{ }_{\mathcal{D}}^{P} P_{\mathcal{C}}$, and ${ }_{\mathcal{D}}^{P}{ }_{\mathcal{B}}$. Justify your result.
b. [M] Use a matrix program either to help you find the equation or to check the equation you write. Work with three bases for \mathbb{R}^{2}. (See Exercises 7-10.)

SOLUTIONS TO PRACTICE PROBLEMS

1. Since the columns of P are \mathcal{G}-coordinate vectors, a vector of the form $P \mathbf{x}$ must be a \mathcal{G}-coordinate vector. Thus P satisfies equation (ii).
2. The coordinate vectors found in Example 1 show that

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{ll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \left.\left.\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]=\left[\begin{array}{rr}
4 & -6 \\
1 & 1
\end{array}\right] .\right] .
\end{array}\right.
$$

Hence

$$
\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=\left(\underset{\mathcal{C} \leftarrow \mathcal{B}}{ }{ }^{P}\right)^{-1}=\frac{1}{10}\left[\begin{array}{rr}
1 & 6 \\
-1 & 4
\end{array}\right]=\left[\begin{array}{rr}
.1 & .6 \\
-.1 & .4
\end{array}\right]
$$

4.8 APPLICATIONS TO DIFFERENCE EQUATIONS

Now that powerful computers are widely available, more and more scientific and engineering problems are being treated in a way that uses discrete, or digital, data rather than continuous data. Difference equations are often the appropriate tool to analyze such data. Even when a differential equation is used to model a continuous process, a numerical solution is often produced from a related difference equation.

This section highlights some fundamental properties of linear difference equations that are best explained using linear algebra.

Discrete-Time Signals

The vector space \mathbb{S} of discrete-time signals was introduced in Section 4.1. A signal in \mathbb{S} is a function defined only on the integers and is visualized as a sequence of numbers, say, $\left\{y_{k}\right\}$. Figure 1 shows three typical signals whose general terms are $(.7)^{k}, 1^{k}$, and $(-1)^{k}$, respectively.

FIGURE 1 Three signals in \mathbb{S}.

