1

EXAMPLE 3 Let
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$.

- a. Find the change-of-coordinates matrix from C to \mathcal{B} .
- b. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

SOLUTION

a. Notice that $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ is needed rather than $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$, and compute

$$\begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -7 & -5 \\ -3 & 4 & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & 3 \\ 0 & 1 & 6 & 4 \end{bmatrix}$$

So

$${}_{\mathcal{B}\leftarrow\mathcal{C}}^{P} = \begin{bmatrix} 5 & 3\\ 6 & 4 \end{bmatrix}$$

b. By part (a) and property (6) above (with \mathcal{B} and \mathcal{C} interchanged),

$${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P} = ({}_{\mathcal{B} \leftarrow \mathcal{C}}^{P})^{-1} = \frac{1}{2} \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix} = \begin{bmatrix} 2 & -3/2 \\ -3 & 5/2 \end{bmatrix} \blacksquare$$

Another description of the change-of-coordinates matrix ${}_{\mathcal{C} \leftarrow \mathcal{B}} P_{\mathcal{B}}$ uses the change-ofcoordinate matrices $P_{\mathcal{B}}$ and $P_{\mathcal{C}}$ that convert \mathcal{B} -coordinates and \mathcal{C} -coordinates, respectively, into standard coordinates. Recall that for each **x** in \mathbb{R}^n ,

$$P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}, \quad P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}} = \mathbf{x}, \text{ and } [\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x}$$

Thus

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

In \mathbb{R}^n , the change-of-coordinates matrix ${}_{\mathcal{C} \leftarrow \mathcal{B}}^P$ may be computed as $P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$. Actually, for matrices larger than 2×2 , an algorithm analogous to the one in Example 3 is faster than computing $P_{\mathcal{C}}^{-1}$ and then $P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Let $\mathcal{F} = {\mathbf{f}_1, \mathbf{f}_2}$ and $\mathcal{G} = {\mathbf{g}_1, \mathbf{g}_2}$ be bases for a vector space *V*, and let *P* be a matrix whose columns are $[\mathbf{f}_1]_{\mathcal{G}}$ and $[\mathbf{f}_2]_{\mathcal{G}}$. Which of the following equations is satisfied by *P* for all **v** in *V*?

(i)
$$[\mathbf{v}]_{\mathcal{F}} = P[\mathbf{v}]_{\mathcal{G}}$$
 (ii) $[\mathbf{v}]_{\mathcal{G}} = P[\mathbf{v}]_{\mathcal{F}}$

2. Let \mathcal{B} and \mathcal{C} be as in Example 1. Use the results of that example to find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

4.7 EXERCISES

- 1. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = 6\mathbf{c}_1 2\mathbf{c}_2$ and $\mathbf{b}_2 = 9\mathbf{c}_1 4\mathbf{c}_2$.
 - a. Find the change-of-coordinates matrix from ${\mathcal B}$ to ${\mathcal C}.$
 - b. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x} = -3\mathbf{b}_1 + 2\mathbf{b}_2$. Use part (a).
- 2. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = -\mathbf{c}_1 + 4\mathbf{c}_2$ and $\mathbf{b}_2 = 5\mathbf{c}_1 3\mathbf{c}_2$.
 - a. Find the change-of-coordinates matrix from ${\mathcal B}$ to ${\mathcal C}.$
 - b. Find $[x]_{c}$ for $x = 5b_1 + 3b_2$.

4.7 Change of Basis 245

3. Let $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2}$ and $\mathcal{W} = {\mathbf{w}_1, \mathbf{w}_2}$ be bases for *V*, and let *P* be a matrix whose columns are $[\mathbf{u}_1]_{\mathcal{W}}$ and $[\mathbf{u}_2]_{\mathcal{W}}$. Which of the following equations is satisfied by *P* for all **x** in *V*?

(i)
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{U}} = P \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{W}}$$
 (ii) $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{W}} = P \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{U}}$

4. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ be bases for *V*, and let $P = [[\mathbf{d}_1]_{\mathcal{A}} \quad [\mathbf{d}_2]_{\mathcal{A}} \quad [\mathbf{d}_3]_{\mathcal{A}}]$. Which of the following equations is satisfied by *P* for all **x** in *V*?

(i) $[\mathbf{x}]_{\mathcal{A}} = P[\mathbf{x}]_{\mathcal{D}}$ (ii) $[\mathbf{x}]_{\mathcal{D}} = P[\mathbf{x}]_{\mathcal{A}}$

- 5. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be bases for a vector space V, and suppose $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2$, $\mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$, and $\mathbf{a}_3 = \mathbf{b}_2 - 2\mathbf{b}_3$.
 - a. Find the change-of-coordinates matrix from ${\mathcal A}$ to ${\mathcal B}.$
 - b. Find $[x]_{B}$ for $x = 3a_1 + 4a_2 + a_3$.
- 6. Let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ and $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ be bases for a vector space V, and suppose $\mathbf{f}_1 = 2\mathbf{d}_1 - \mathbf{d}_2 + \mathbf{d}_3$, $\mathbf{f}_2 = 3\mathbf{d}_2 + \mathbf{d}_3$, and $\mathbf{f}_3 = -3\mathbf{d}_1 + 2\mathbf{d}_3$.
 - a. Find the change-of-coordinates matrix from \mathcal{F} to \mathcal{D} .
 - b. Find $[\mathbf{x}]_{\mathcal{D}}$ for $\mathbf{x} = \mathbf{f}_1 2\mathbf{f}_2 + 2\mathbf{f}_3$.

In Exercises 7–10, let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ be bases for \mathbb{R}^2 . In each exercise, find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

7.
$$\mathbf{b}_1 = \begin{bmatrix} 7\\5 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3\\-1 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 1\\-5 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} -2\\2 \end{bmatrix}$$

8. $\mathbf{b}_1 = \begin{bmatrix} -1\\8 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1\\-5 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 1\\4 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$
9. $\mathbf{b}_1 = \begin{bmatrix} -6\\-1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2\\0 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 2\\-1 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 6\\-2 \end{bmatrix}$
10. $\mathbf{b}_1 = \begin{bmatrix} 7\\-2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2\\-1 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 4\\1 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 5\\2 \end{bmatrix}$

In Exercises 11 and 12, \mathcal{B} and \mathcal{C} are bases for a vector space V. Mark each statement True or False. Justify each answer.

- 11. a. The columns of the change-of-coordinates matrix ${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$ are \mathcal{B} -coordinate vectors of the vectors in \mathcal{C} .
 - b. If $V = \mathbb{R}^n$ and C is the *standard* basis for V, then $\underset{C \leftarrow B}{P}$ is the same as the change-of-coordinates matrix P_B introduced in Section 4.4.
- **12.** a. The columns of $_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$ are linearly independent.
 - b. If $V = \mathbb{R}^2$, $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$, then row reduction of $[\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{b}_1 \ \mathbf{b}_2]$ to $[I \ P]$ produces a matrix *P* that satisfies $[\mathbf{x}]_{\mathcal{B}} = P[\mathbf{x}]_{\mathcal{C}}$ for all \mathbf{x} in *V*.
- 13. In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1 2t + t^2, 3 5t + 4t^2, 2t + 3t^2\}$ to the standard basis $\mathcal{C} = \{1, t, t^2\}$. Then find the \mathcal{B} -coordinate vector for -1 + 2t.
- 14. In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1 3t^2, 2 + t 5t^2, 1 + 2t\}$ to the standard basis. Then write t^2 as a linear combination of the polynomials in \mathcal{B} .

Exercises 15 and 16 provide a proof of Theorem 15. Fill in a justification for each step.

15. Given v in V, there exist scalars x_1, \ldots, x_n , such that

$$\mathbf{v} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_n \mathbf{b}_n$$

because (a) _____. Apply the coordinate mapping determined by the basis C, and obtain

$$[\mathbf{v}]_{\mathcal{C}} = x_1[\mathbf{b}_1]_{\mathcal{C}} + x_2[\mathbf{b}_2]_{\mathcal{C}} + \dots + x_n[\mathbf{b}_n]_{\mathcal{C}}$$

because (b) _____. This equation may be written in the form

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} & \cdots & \begin{bmatrix} \mathbf{b}_n \end{bmatrix}_{\mathcal{C}} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
(8)

by the definition of (c) _____. This shows that the matrix ${}_{C \leftarrow B}^{P}$ shown in (5) satisfies $[\mathbf{v}]_{C} = {}_{C \leftarrow B}^{P} [\mathbf{v}]_{B}$ for each \mathbf{v} in V, because the vector on the right side of (8) is (d) _____.

16. Suppose Q is any matrix such that

$$[\mathbf{v}]_{\mathcal{C}} = Q[\mathbf{v}]_{\mathcal{B}} \quad \text{for each } \mathbf{v} \text{ in } V \tag{9}$$

Set $\mathbf{v} = \mathbf{b}_1$ in (9). Then (9) shows that $[\mathbf{b}_1]_C$ is the first column of Q because (a) ______. Similarly, for k = 2, ..., n, the kth column of Q is (b) ______ because (c) ______. This shows that the matrix ${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$ defined by (5) in Theorem 15 is the only matrix that satisfies condition (4).

- **17.** [**M**] Let $\mathcal{B} = {\mathbf{x}_0, ..., \mathbf{x}_6}$ and $C = {\mathbf{y}_0, ..., \mathbf{y}_6}$, where \mathbf{x}_k is the function $\cos^k t$ and \mathbf{y}_k is the function $\cos k t$. Exercise 34 in Section 4.5 showed that both \mathcal{B} and \mathcal{C} are bases for the vector space $H = \text{Span} {\mathbf{x}_0, ..., \mathbf{x}_6}$.
 - a. Set $P = \begin{bmatrix} \begin{bmatrix} \mathbf{y}_0 \end{bmatrix}_{\mathcal{B}} & \cdots & \begin{bmatrix} \mathbf{y}_6 \end{bmatrix}_{\mathcal{B}} \end{bmatrix}$, and calculate P^{-1} .
 - b. Explain why the columns of P^{-1} are the C-coordinate vectors of $\mathbf{x}_0, \ldots, \mathbf{x}_6$. Then use these coordinate vectors to write trigonometric identities that express powers of $\cos t$ in terms of the functions in C.

See the Study Guide.

18. [**M**] (*Calculus required*)³ Recall from calculus that integrals such as

$$\int (5\cos^3 t - 6\cos^4 t + 5\cos^5 t - 12\cos^6 t) dt \tag{10}$$

are tedious to compute. (The usual method is to apply integration by parts repeatedly and use the half-angle formula.) Use the matrix P or P^{-1} from Exercise 17 to transform (10); then compute the integral.

³ The idea for Exercises 17 and 18 and five related exercises in earlier sections came from a paper by Jack W. Rogers, Jr., of Auburn University, presented at a meeting of the International Linear Algebra Society, August 1995. See "Applications of Linear Algebra in Calculus," *American Mathematical Monthly* **104** (1), 1997.

I.

246 CHAPTER 4 Vector Spaces

19. [M] Let

$$P = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -5 & 0 \\ 4 & 6 & 1 \end{bmatrix},$$

$$\mathbf{v}_1 = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -8 \\ 5 \\ 2 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} -7 \\ 2 \\ 6 \end{bmatrix}$$

- a. Find a basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ for \mathbb{R}^3 such that P is the change-of-coordinates matrix from $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. [*Hint:* What do the columns of $\underset{C \leftarrow B}{P}$ represent?]
- b. Find a basis $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ for \mathbb{R}^3 such that *P* is the changeof-coordinates matrix from $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.
- **20.** Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$, $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$, and $\mathcal{D} = {\mathbf{d}_1, \mathbf{d}_2}$ be bases for a two-dimensional vector space.
 - a. Write an equation that relates the matrices $\underset{C \leftarrow B}{P}$, $\underset{D \leftarrow C}{P}$, and $\underset{D \leftarrow B}{P}$. Justify your result.
 - b. [M] Use a matrix program either to help you find the equation or to check the equation you write. Work with three bases for \mathbb{R}^2 . (See Exercises 7–10.)

SOLUTIONS TO PRACTICE PROBLEMS

- 1. Since the columns of *P* are *G*-coordinate vectors, a vector of the form *P***x** must be a *G*-coordinate vector. Thus *P* satisfies equation (ii).
- 2. The coordinate vectors found in Example 1 show that

$${}_{\mathcal{C} \leftarrow \mathcal{B}}^{P} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix}$$

Hence

$${}_{\mathcal{B}\leftarrow\mathcal{C}}^{P} = ({}_{\mathcal{C}\leftarrow\mathcal{B}}^{P})^{-1} = \frac{1}{10} \begin{bmatrix} 1 & 6\\ -1 & 4 \end{bmatrix} = \begin{bmatrix} .1 & .6\\ -.1 & .4 \end{bmatrix}$$

4.8 APPLICATIONS TO DIFFERENCE EQUATIONS

Now that powerful computers are widely available, more and more scientific and engineering problems are being treated in a way that uses discrete, or digital, data rather than continuous data. Difference equations are often the appropriate tool to analyze such data. Even when a differential equation is used to model a continuous process, a numerical solution is often produced from a related difference equation.

This section highlights some fundamental properties of linear difference equations that are best explained using linear algebra.

Discrete-Time Signals

The vector space S of discrete-time signals was introduced in Section 4.1. A **signal** in S is a function defined only on the integers and is visualized as a sequence of numbers, say, $\{y_k\}$. Figure 1 shows three typical signals whose general terms are $(.7)^k$, 1^k , and $(-1)^k$, respectively.

FIGURE 1 Three signals in S.