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EXAMPLE 3 Let b1 D
�

1

�3

�
, b2 D

� �2

4

�
, c1 D

� �7

9

�
, c2 D

� �5

7

�
, and con-

sider the bases for R2 given by B D fb1; b2g and C D fc1; c2g.

a. Find the change-of-coordinates matrix from C to B.

b. Find the change-of-coordinates matrix from B to C.

SOLUTION

a. Notice that PB C is needed rather than PC B , and compute

�
b1 b2 c1 c2

� D
�

1 �2 �7 �5

�3 4 9 7

�
�

�
1 0 5 3

0 1 6 4

�

So

PB C D
�

5 3

6 4

�

b. By part (a) and property (6) above (with B and C interchanged),

PC B D . PB C /�1 D 1

2

�
4 �3

�6 5

�
D

�
2 �3=2

�3 5=2

�

Another description of the change-of-coordinates matrix PC B uses the change-of-

coordinate matrices PB and PC that convert B-coordinates and C-coordinates, respec-
tively, into standard coordinates. Recall that for each x in Rn,

PBŒx�B D x; PCŒx�C D x; and Œx�C D P �1
C x

Thus
Œx�C D P �1

C x D P �1
C PBŒx�B

In Rn, the change-of-coordinates matrix PC B may be computed as P �1
C PB. Actually,

for matrices larger than 2 � 2, an algorithm analogous to the one in Example 3 is faster
than computing P �1

C and then P �1
C PB. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. LetF D ff1; f2g and G D fg1; g2g be bases for a vector space V , and let P be a matrix
whose columns are Œ f1 �G and Œ f2 �G . Which of the following equations is satisfied
by P for all v in V ?

(i) Œ v �F D P Œ v �G (ii) Œ v �G D PŒ v �F

2. Let B and C be as in Example 1. Use the results of that example to find the change-
of-coordinates matrix from C to B.

4.7 EXERCISES
1. Let B D fb1;b2g and C D fc1; c2g be bases for a vector space

V , and suppose b1 D 6c1 � 2c2 and b2 D 9c1 � 4c2.

a. Find the change-of-coordinates matrix from B to C.

b. Find Œ x �C for x D �3b1 C 2b2. Use part (a).

2. Let B D fb1;b2g and C D fc1; c2g be bases for a vector space
V , and suppose b1 D �c1 C 4c2 and b2 D 5c1 � 3c2.

a. Find the change-of-coordinates matrix from B to C.

b. Find Œ x �C for x D 5b1 C 3b2.
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3. Let U D fu1;u2g and W D fw1;w2g be bases for V , and let
P be a matrix whose columns are Œu1�W and Œu2�W . Which
of the following equations is satisfied by P for all x in V ?

(i) Œ x �U D P Œ x �W (ii) Œ x �W D P Œ x �U
4. Let A D fa1; a2; a3g and D D fd1;d2;d3g be bases for V ,

and let P D Œ Œd1�A Œd2�A Œd3�A �. Which of the follow-
ing equations is satisfied by P for all x in V ?

(i) Œ x �A D P Œ x �D (ii) Œ x �D D P Œ x �A
5. Let A D fa1; a2; a3g and B D fb1;b2;b3g be bases

for a vector space V , and suppose a1 D 4b1 � b2,
a2 D �b1 C b2 C b3, and a3 D b2 � 2b3.

a. Find the change-of-coordinates matrix from A to B.

b. Find Œ x �B for x D 3a1 C 4a2 C a3.

6. Let D D fd1;d2;d3g and F D ff1; f2; f3g be bases for
a vector space V , and suppose f1 D 2d1 � d2 C d3,
f2 D 3d2 C d3, and f3 D �3d1 C 2d3.

a. Find the change-of-coordinates matrix from F to D.

b. Find Œ x �D for x D f1 � 2f2 C 2f3.

In Exercises 7–10, let B D fb1;b2g and C D fc1; c2g be bases for
R2. In each exercise, find the change-of-coordinates matrix from
B to C and the change-of-coordinates matrix from C to B.

7. b1 D
�

7

5

�
, b2 D

��3

�1

�
, c1 D

�
1

�5

�
, c2 D

��2

2

�

8. b1 D
��1

8

�
, b2 D

�
1

�5

�
, c1 D

�
1

4

�
, c2 D

�
1

1

�

9. b1 D
��6

�1

�
, b2 D

�
2

0

�
, c1 D

�
2

�1

�
, c2 D

�
6

�2

�

10. b1 D
�

7

�2

�
, b2 D

�
2

�1

�
, c1 D

�
4

1

�
, c2 D

�
5

2

�

In Exercises 11 and 12, B and C are bases for a vector space V .
Mark each statement True or False. Justify each answer.

11. a. The columns of the change-of-coordinates matrix P
C B

are B-coordinate vectors of the vectors in C.

b. If V D Rn and C is the standard basis for V , then P
C B

is the same as the change-of-coordinates matrix PB intro-
duced in Section 4.4.

12. a. The columns of P
C B are linearly independent.

b. If V D R2, B D fb1;b2g, and C D fc1; c2g, then row
reduction of Œ c1 c2 b1 b2 � to Œ I P � produces a
matrix P that satisfies Œ x �B D P Œ x �C for all x in V .

13. In P2, find the change-of-coordinates matrix from the basis
B D f1 � 2t C t 2; 3 � 5t C 4t2; 2t C 3t2g to the standard
basis C D f1; t; t 2g. Then find the B-coordinate vector for
�1 C 2t .

14. In P2, find the change-of-coordinates matrix from the ba-
sis B D f1 � 3t2; 2 C t � 5t2; 1 C 2tg to the standard basis.
Then write t 2 as a linear combination of the polynomials in B.

Exercises 15 and 16 provide a proof of Theorem 15. Fill in a
justification for each step.

15. Given v in V , there exist scalars x1; : : : ; xn, such that

v D x1b1 C x2b2 C � � � C xnbn

because (a) . Apply the coordinate mapping deter-
mined by the basis C, and obtain

Œv�C D x1Œb1�C C x2Œb2�C C � � � C xnŒbn�C

because (b) . This equation may be written in the form

Œ v �C D �
Œ b1 �C Œ b2 �C � � � Œ bn �C

�
2
64

x1
:::

xn

3
75 .8/

by the definition of (c) . This shows that the matrix
P

C B shown in (5) satisfies Œv�C D P
C B Œv�B for each v in V ,

because the vector on the right side of (8) is (d) .

16. Suppose Q is any matrix such that

Œv�C D QŒv�B for each v in V .9/

Set v D b1 in (9). Then (9) shows that Œb1�C is the first column
of Q because (a) . Similarly, for k D 2; : : : ; n, the kth
column of Q is (b) because (c) . This shows

that the matrix P
C B defined by (5) in Theorem 15 is the only

matrix that satisfies condition (4).

17. [M] Let B D fx0; : : : ; x6g and C D fy0; : : : ; y6g, where xk is
the function cosk t and yk is the function cos kt . Exercise 34
in Section 4.5 showed that both B and C are bases for the
vector space H D Span fx0; : : : ; x6g.

a. Set P D �
Œ y0 �B � � � Œ y6 �B

�
, and calculate P �1.

b. Explain why the columns of P �1 are the C-coordinate
vectors of x0; : : : ; x6. Then use these coordinate vectors
to write trigonometric identities that express powers of
cos t in terms of the functions in C.

See the Study Guide.

18. [M] (Calculus required)3 Recall from calculus that integrals
such as
Z

.5 cos3 t � 6 cos4 t C 5 cos5 t � 12 cos6 t/ dt .10/

are tedious to compute. (The usual method is to apply inte-
gration by parts repeatedly and use the half-angle formula.)
Use the matrix P or P �1 from Exercise 17 to transform (10);
then compute the integral.

3 The idea for Exercises 17 and 18 and five related exercises in earlier
sections came from a paper by Jack W. Rogers, Jr., of Auburn University,
presented at a meeting of the International Linear Algebra Society,
August 1995. See “Applications of Linear Algebra in Calculus,” American
Mathematical Monthly 104 (1), 1997.
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19. [M] Let

P D
2
4

1 2 �1

�3 �5 0

4 6 1

3
5,

v1 D
2
4

�2

2

3

3
5, v2 D

2
4

�8

5

2

3
5, v3 D

2
4

�7

2

6

3
5

a. Find a basis fu1;u2;u3g for R3 such that P is the
change-of-coordinates matrix from fu1;u2;u3g to the

basis fv1; v2; v3g. [Hint: What do the columns of P
C B

represent?]

b. Find a basis fw1;w2;w3g for R3 such that P is the change-
of-coordinates matrix from fv1; v2; v3g to fw1;w2;w3g.

20. Let B D fb1;b2g, C D fc1; c2g, and D D fd1;d2g be bases
for a two-dimensional vector space.

a. Write an equation that relates the matrices P
C B , P

D C ,

and P
D B . Justify your result.

b. [M] Use a matrix program either to help you find the
equation or to check the equation you write. Work with
three bases for R2. (See Exercises 7–10.)

SOLUTIONS TO PRACTICE PROBLEMS

1. Since the columns of P are G-coordinate vectors, a vector of the form P x must be
a G-coordinate vector. Thus P satisfies equation (ii).

2. The coordinate vectors found in Example 1 show that

PC B D �
Œ b1 �C Œ b2 �C

� D
�

4 �6

1 1

�

Hence

PB C D . PC B /�1 D 1

10

�
1 6

�1 4

�
D

�
:1 :6

�:1 :4

�

4.8 APPLICATIONS TO DIFFERENCE EQUATIONS

Now that powerful computers are widely available, more and more scientific and
engineering problems are being treated in a way that uses discrete, or digital, data rather
than continuous data. Difference equations are often the appropriate tool to analyze
such data. Even when a differential equation is used to model a continuous process, a
numerical solution is often produced from a related difference equation.

This section highlights some fundamental properties of linear difference equations
that are best explained using linear algebra.

Discrete-Time Signals
The vector space S of discrete-time signals was introduced in Section 4.1. A signal in
S is a function defined only on the integers and is visualized as a sequence of numbers,
say, fykg. Figure 1 shows three typical signals whose general terms are .:7/k , 1k , and
.�1/k , respectively.

yk = .7k

–2 –1 0 1 2 –2 –1 0 1 2 –2 0 2

yk = 1k yk = (–1)k

FIGURE 1 Three signals in S.
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