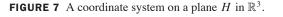
Thus $c_1 = 2, c_2 = 3$, and $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$. The coordinate system on H determined by \mathcal{B} is shown in Figure 7.

3v.

 $\hat{x_2}$



If a different basis for H were chosen, would the associated coordinate system also make H isomorphic to \mathbb{R}^2 ? Surely, this must be true. We shall prove it in the next section.

PRACTICE PROBLEMS

1. Let
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -3 \\ 4 \\ 0 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} -8 \\ 2 \\ 3 \end{bmatrix}$.

- a. Show that the set $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ is a basis of \mathbb{R}^3 .
- b. Find the change-of-coordinates matrix from $\mathcal B$ to the standard basis.
- c. Write the equation that relates \mathbf{x} in \mathbb{R}^3 to $[\mathbf{x}]_{\beta}$.
- d. Find $[\mathbf{x}]_{\mathcal{B}}$, for the **x** given above.
- 2. The set $\mathcal{B} = \{1 + t, 1 + t^2, t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 6 + 3t t^2$ relative to \mathcal{B} .

4.4 EXERCISES

In Exercises 1–4, find the vector \mathbf{x} determined by the given In Exercises coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ and the given basis \mathcal{B} . In Exercises the given basis

1.
$$\mathcal{B} = \left\{ \begin{bmatrix} 3\\-5 \end{bmatrix}, \begin{bmatrix} -4\\6 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 5\\3 \end{bmatrix}$$

2. $\mathcal{B} = \left\{ \begin{bmatrix} 4\\5 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 8\\-5 \end{bmatrix}$
3. $\mathcal{B} = \left\{ \begin{bmatrix} 1\\-4\\3 \end{bmatrix}, \begin{bmatrix} 5\\2\\-2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\0 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\0\\-1 \end{bmatrix}$
4. $\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-5\\2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\3 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4\\8\\-7 \end{bmatrix}$

In Exercises 5–8, find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} relative to the given basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$.

5.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

6. $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 5 \\ -6 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$
7. $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ 4 \\ 9 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 8 \\ -9 \\ 6 \end{bmatrix}$
8. $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$

4.4 Coordinate Systems 225

In Exercises 9 and 10, find the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n .

9.
$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\-9 \end{bmatrix}, \begin{bmatrix} 1\\8 \end{bmatrix} \right\}$$

10. $\mathcal{B} = \left\{ \begin{bmatrix} 3\\-1\\4 \end{bmatrix}, \begin{bmatrix} 2\\0\\-5 \end{bmatrix}, \begin{bmatrix} 8\\-2\\7 \end{bmatrix} \right\}$

In Exercises 11 and 12, use an inverse matrix to find $[\mathbf{x}]_{\mathcal{B}}$ for the given \mathbf{x} and \mathcal{B} .

11.
$$\mathcal{B} = \left\{ \begin{bmatrix} 3\\-5 \end{bmatrix}, \begin{bmatrix} -4\\6 \end{bmatrix} \right\}, \mathbf{x} = \begin{bmatrix} 2\\-6 \end{bmatrix}$$

12. $\mathcal{B} = \left\{ \begin{bmatrix} 4\\5 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\}, \mathbf{x} = \begin{bmatrix} 2\\0 \end{bmatrix}$

- 13. The set $\mathcal{B} = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 1 + 4t + 7t^2$ relative to \mathcal{B} .
- 14. The set $\mathcal{B} = \{1 t^2, t t^2, 2 2t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 3 + t - 6t^2$ relative to \mathcal{B} .

In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \mathcal{B} is a basis for a vector space V.

- 15. a. If x is in V and if B contains n vectors, then the B-coordinate vector of x is in Rⁿ.
 - b. If $P_{\mathcal{B}}$ is the change-of-coordinates matrix, then $[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}\mathbf{x}$, for \mathbf{x} in V.
 - c. The vector spaces \mathbb{P}_3 and \mathbb{R}^3 are isomorphic.
- **16.** a. If \mathcal{B} is the standard basis for \mathbb{R}^n , then the \mathcal{B} -coordinate vector of an **x** in \mathbb{R}^n is **x** itself.
 - b. The correspondence $[\mathbf{x}]_{\mathcal{B}} \mapsto \mathbf{x}$ is called the coordinate mapping.
 - c. In some cases, a plane in \mathbb{R}^3 can be isomorphic to \mathbb{R}^2 .

17. The vectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$ span \mathbb{R}^2

but do not form a basis. Find two different ways to express $\begin{bmatrix} 1\\1 \end{bmatrix}$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

- **18.** Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for a vector space V. Explain why the \mathcal{B} -coordinate vectors of $\mathbf{b}_1, \dots, \mathbf{b}_n$ are the columns $\mathbf{e}_1, \dots, \mathbf{e}_n$ of the $n \times n$ identity matrix.
- **19.** Let *S* be a finite set in a vector space *V* with the property that every **x** in *V* has a unique representation as a linear combination of elements of *S*. Show that *S* is a basis of *V*.
- 20. Suppose {v₁,..., v₄} is a linearly dependent spanning set for a vector space V. Show that each w in V can be expressed in more than one way as a linear combination of v₁,..., v₄. [*Hint*: Let w = k₁v₁ + ··· + k₄v₄ be an arbitrary vector in V.

Use the linear dependence of $\{v_1, \ldots, v_4\}$ to produce another representation of **w** as a linear combination of v_1, \ldots, v_4 .]

- 21. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\ -4 \end{bmatrix}, \begin{bmatrix} -2\\ 9 \end{bmatrix} \right\}$. Since the coordinate mapping determined by \mathcal{B} is a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 , this mapping must be implemented by some 2×2 matrix *A*. Find it. [*Hint:* Multiplication by *A* should transform a vector **x** into its coordinate vector [**x**]_B.]
- 22. Let B = {b₁,..., b_n} be a basis for ℝⁿ. Produce a description of an n × n matrix A that implements the coordinate mapping x ↦ [x]_B. (See Exercise 21.)

Exercises 23–26 concern a vector space V, a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$, and the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$.

- **23.** Show that the coordinate mapping is one-to-one. [*Hint:* Suppose $[\mathbf{u}]_{\mathcal{B}} = [\mathbf{w}]_{\mathcal{B}}$ for some \mathbf{u} and \mathbf{w} in *V*, and show that $\mathbf{u} = \mathbf{w}$.]
- 24. Show that the coordinate mapping is *onto* \mathbb{R}^n . That is, given any **y** in \mathbb{R}^n , with entries y_1, \ldots, y_n , produce **u** in V such that $[\mathbf{u}]_{\mathcal{B}} = \mathbf{y}$.
- **25.** Show that a subset $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in *V* is linearly independent if and only if the set of coordinate vectors $\{[\mathbf{u}_1]_{\mathcal{B}}, \ldots, [\mathbf{u}_p]_{\mathcal{B}}\}$ is linearly independent in \mathbb{R}^n . [*Hint:* Since the coordinate mapping is one-to-one, the following equations have the same solutions, c_1, \ldots, c_p .]

$$c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p = \mathbf{0} \qquad \text{The zero vector in } V$$
$$[c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p]_{\mathcal{B}} = [\mathbf{0}]_{\mathcal{B}} \qquad \text{The zero vector in } \mathbb{R}^d$$

26. Given vectors $\mathbf{u}_1, \ldots, \mathbf{u}_p$, and \mathbf{w} in *V*, show that \mathbf{w} is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_p$ if and only if $[\mathbf{w}]_{\mathcal{B}}$ is a linear combination of the coordinate vectors $[\mathbf{u}_1]_{\mathcal{B}}, \ldots, [\mathbf{u}_p]_{\mathcal{B}}$.

In Exercises 27–30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

- **27.** $1 + 2t^3$, $2 + t 3t^2$, $-t + 2t^2 t^3$
- **28.** $1 2t^2 t^3$, $t + 2t^3$, $1 + t 2t^2$
- **29.** $(1-t)^2$, $t-2t^2+t^3$, $(1-t)^3$
- **30.** $(2-t)^3$, $(3-t)^2$, $1+6t-5t^2+t^3$
- **31.** Use coordinate vectors to test whether the following sets of polynomials span \mathbb{P}_2 . Justify your conclusions.
 - a. $1 3t + 5t^2$, $-3 + 5t 7t^2$, $-4 + 5t 6t^2$, $1 t^2$ b. $5t + t^2$, $1 - 8t - 2t^2$, $-3 + 4t + 2t^2$, 2 - 3t
- **32.** Let $\mathbf{p}_1(t) = 1 + t^2$, $\mathbf{p}_2(t) = t 3t^2$, $\mathbf{p}_3(t) = 1 + t 3t^2$.
 - a. Use coordinate vectors to show that these polynomials form a basis for \mathbb{P}_2 .
 - b. Consider the basis $\mathcal{B} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ for \mathbb{P}_2 . Find \mathbf{q} in \mathbb{P}_2 , given that $[\mathbf{q}]_{\mathcal{B}} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}$.

226 CHAPTER 4 Vector Spaces

In Exercises 33 and 34, determine whether the sets of polynomials form a basis for \mathbb{P}_3 . Justify your conclusions.

33. [**M**]
$$3 + 7t$$
, $5 + t - 2t^3$, $t - 2t^2$, $1 + 16t - 6t^2 + 2t^3$

- **34.** [**M**] $5 3t + 4t^2 + 2t^3$, $9 + t + 8t^2 6t^3$, $6 2t + 5t^2$, t^3
- **35.** [M] Let $H = \text{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Show that **x** is in *H* and find the \mathcal{B} -coordinate vector of **x**, for

$$\mathbf{v}_{1} = \begin{bmatrix} 11\\ -5\\ 10\\ 7 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 14\\ -8\\ 13\\ 10 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 19\\ -13\\ 18\\ 15 \end{bmatrix}$$

36. [M] Let $H = \text{Span} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Show that \mathcal{B} is a basis for H and \mathbf{x} is in H, and find the \mathcal{B} -coordinate vector of \mathbf{x} , for

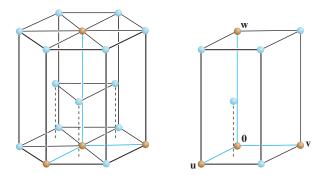
$$\mathbf{v}_1 = \begin{bmatrix} -6\\4\\-9\\4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 8\\-3\\7\\-3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -9\\5\\-8\\3 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4\\7\\-8\\3 \end{bmatrix}$$

[M] Exercises 37 and 38 concern the crystal lattice for titanium, which has the hexagonal structure shown on the left in the accompanying figure. The vectors $\begin{bmatrix} 2.6\\-1.5\end{bmatrix}, \begin{bmatrix} 0\\3\end{bmatrix}, \begin{bmatrix} 0\\0\end{bmatrix}$ in \mathbb{R}^3

companying figure. The vectors $\begin{bmatrix} -1.5 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 4.8 \end{bmatrix}$ in \mathbb{R}^3 form a basis for the unit cell shown on the right. The numbers

here are Ångstrom units (1 Å = 10^{-8} cm). In alloys of titanium,

some additional atoms may be in the unit cell at the *octahedral* and *tetrahedral* sites (so named because of the geometric objects formed by atoms at these locations).



The hexagonal close-packed lattice and its unit cell.

37. One of the octahedral sites is $\begin{bmatrix} 1/2 \\ 1/4 \\ 1/6 \end{bmatrix}$, relative to the lattice

basis. Determine the coordinates of this site relative to the standard basis of \mathbb{R}^3 .

38. One of the tetrahedral sites is $\begin{bmatrix} 1/2 \\ 1/2 \\ 1/3 \end{bmatrix}$. Determine the coordinates of this site relative to the standard basis of \mathbb{R}^3 .

SOLUTIONS TO PRACTICE PROBLEMS

1. a. It is evident that the matrix $P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3]$ is row-equivalent to the identity matrix. By the Invertible Matrix Theorem, $P_{\mathcal{B}}$ is invertible and its columns form a basis for \mathbb{R}^3 .

b. From part (a), the change-of-coordinates matrix is $P_{\mathcal{B}} = \begin{bmatrix} 1 & -3 & 3 \\ 0 & 4 & -6 \\ 0 & 0 & 3 \end{bmatrix}$.

- c. $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$
- d. To solve the equation in (c), it is probably easier to row reduce an augmented matrix than to compute $P_{\mathcal{B}}^{-1}$:

$$\begin{bmatrix} 1 & -3 & 3 & -8 \\ 0 & 4 & -6 & 2 \\ 0 & 0 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
$$P_{\mathcal{B}} \qquad \mathbf{x} \qquad I \qquad \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}$$

Hence

$$\left[\mathbf{x}\right]_{\mathcal{B}} = \begin{bmatrix} -5\\2\\1 \end{bmatrix}$$

2. The coordinates of $\mathbf{p}(t) = 6 + 3t - t^2$ with respect to \mathcal{B} satisfy

$$c_1(1+t) + c_2(1+t^2) + c_3(t+t^2) = 6 + 3t - t^2$$