Typically, such a linear transformation is described in terms of one or more derivatives of a function. To explain this in any detail would take us too far afield at this point. So we consider only two examples. The first explains why the operation of differentiation is a linear transformation.

EXAMPLE 8 (Calculus required) Let V be the vector space of all real-valued functions f defined on an interval $[a, b]$ with the property that they are differentiable and their derivatives are continuous functions on $[a, b]$. Let W be the vector space $C[a, b]$ of all continuous functions on $[a, b]$, and let $D: V \rightarrow W$ be the transformation that changes f in V into its derivative f^{\prime}. In calculus, two simple differentiation rules are

$$
D(f+g)=D(f)+D(g) \quad \text { and } \quad D(c f)=c D(f)
$$

That is, D is a linear transformation. It can be shown that the kernel of D is the set of constant functions on $[a, b]$ and the range of D is the set W of all continuous functions on $[a, b]$.

EXAMPLE 9 (Calculus required) The differential equation

$$
\begin{equation*}
y^{\prime \prime}+\omega^{2} y=0 \tag{4}
\end{equation*}
$$

where ω is a constant, is used to describe a variety of physical systems, such as the vibration of a weighted spring, the movement of a pendulum, and the voltage in an inductance-capacitance electrical circuit. The set of solutions of (4) is precisely the kernel of the linear transformation that maps a function $y=f(t)$ into the function $f^{\prime \prime}(t)+\omega^{2} f(t)$. Finding an explicit description of this vector space is a problem in differential equations. The solution set turns out to be the space described in Exercise 19 in Section 4.1.

PRACTICE PROBLEMS

1. Let $W=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a-3 b-c=0\right\}$. Show in two different ways that W is a subspace of \mathbb{R}^{3}. (Use two theorems.)
2. Let $A=\left[\begin{array}{rrr}7 & -3 & 5 \\ -4 & 1 & -5 \\ -5 & 2 & -4\end{array}\right], \mathbf{v}=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{r}7 \\ 6 \\ -3\end{array}\right]$. Suppose you know that the equations $A \mathbf{x}=\mathbf{v}$ and $A \mathbf{x}=\mathbf{w}$ are both consistent. What can you say about the equation $A \mathbf{x}=\mathbf{v}+\mathbf{w}$?
3. Let A be an $n \times n$ matrix. If $\operatorname{Col} A=\operatorname{Nul} A$, show that $\operatorname{Nul} A^{2}=\mathbb{R}^{n}$.

4.2 EXERCISES

1. Determine if $\mathbf{w}=\left[\begin{array}{r}1 \\ 3 \\ -4\end{array}\right]$ is in $\mathrm{Nul} A$, where

$$
A=\left[\begin{array}{rrr}
3 & -5 & -3 \\
6 & -2 & 0 \\
-8 & 4 & 1
\end{array}\right] .
$$

2. Determine if $\mathbf{w}=\left[\begin{array}{r}5 \\ -3 \\ 2\end{array}\right]$ is in $\operatorname{Nul} A$, where

$$
A=\left[\begin{array}{rrr}
5 & 21 & 19 \\
13 & 23 & 2 \\
8 & 14 & 1
\end{array}\right]
$$

In Exercises 3-6, find an explicit description of $\mathrm{Nul} A$ by listing vectors that span the null space.
3. $A=\left[\begin{array}{rrrr}1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2\end{array}\right]$
4. $A=\left[\begin{array}{rrrr}1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0\end{array}\right]$
5. $A=\left[\begin{array}{rrrrr}1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
6. $A=\left[\begin{array}{rrrrr}1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

In Exercises 7-14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.
7. $\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=2\right\}$
8. $\left\{\left[\begin{array}{l}r \\ s \\ t\end{array}\right]: 5 r-1=s+2 t\right\}$
9. $\left\{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]: \begin{array}{l}a-2 b=4 c \\ 2 a=c+3 d\end{array}\right\}$
10. $\left\{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]: \begin{array}{l}a+3 b=c \\ b+c+a=d\end{array}\right\}$
11. $\left\{\left[\begin{array}{c}b-2 d \\ 5+d \\ b+3 d \\ d\end{array}\right]: b, d\right.$ real $\}$
12. $\left\{\left[\begin{array}{c}b-5 d \\ 2 b \\ 2 d+1 \\ d\end{array}\right]: b, d\right.$ real $\}$
13. $\left\{\left[\begin{array}{c}c-6 d \\ d \\ c\end{array}\right]: c, d\right.$ real $\}$
14. $\left\{\left[\begin{array}{c}-a+2 b \\ a-2 b \\ 3 a-6 b\end{array}\right]: a, b\right.$ real $\}$

In Exercises 15 and 16, find A such that the given set is $\operatorname{Col} A$.
15. $\left\{\left[\begin{array}{c}2 s+3 t \\ r+s-2 t \\ 4 r+s \\ 3 r-s-t\end{array}\right]: r, s, t\right.$ real $\}$
16. $\left\{\left[\begin{array}{c}b-c \\ 2 b+c+d \\ 5 c-4 d \\ d\end{array}\right]: b, c, d\right.$ real $\}$

For the matrices in Exercises $17-20$, (a) find k such that $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k}, and (b) find k such that $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k}.
17. $A=\left[\begin{array}{rr}2 & -6 \\ -1 & 3 \\ -4 & 12 \\ 3 & -9\end{array}\right] \quad$ 18. $A=\left[\begin{array}{rrr}7 & -2 & 0 \\ -2 & 0 & -5 \\ 0 & -5 & 7 \\ -5 & 7 & -2\end{array}\right]$
19. $A=\left[\begin{array}{rrrrr}4 & 5 & -2 & 6 & 0 \\ 1 & 1 & 0 & 1 & 0\end{array}\right]$
20. $A=\left[\begin{array}{lllll}1 & -3 & 9 & 0 & -5\end{array}\right]$
21. With A as in Exercise 17, find a nonzero vector in $\operatorname{Nul} A$ and a nonzero vector in $\operatorname{Col} A$.
22. With A as in Exercise 3, find a nonzero vector in $\operatorname{Nul} A$ and a nonzero vector in $\operatorname{Col} A$.
23. Let $A=\left[\begin{array}{rr}-6 & 12 \\ -3 & 6\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Determine if \mathbf{w} is in $\mathrm{Col} A$. Is win Nul A ?
24. Let $A=\left[\begin{array}{rrr}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]$. Determine if \mathbf{w} is in $\operatorname{Col} A$. Is \mathbf{w} in $\operatorname{Nul} A$?

In Exercises 25 and 26, A denotes an $m \times n$ matrix. Mark each statement True or False. Justify each answer.
25. a. The null space of A is the solution set of the equation $A \mathbf{x}=\mathbf{0}$.
b. The null space of an $m \times n$ matrix is in \mathbb{R}^{m}.
c. The column space of A is the range of the mapping $\mathbf{x} \mapsto A \mathbf{x}$.
d. If the equation $A \mathbf{x}=\mathbf{b}$ is consistent, then $\operatorname{Col} A$ is \mathbb{R}^{m}.
e. The kernel of a linear transformation is a vector space.
f. $\operatorname{Col} A$ is the set of all vectors that can be written as $A \mathbf{x}$ for some \mathbf{x}.
26. a. A null space is a vector space.
b. The column space of an $m \times n$ matrix is in \mathbb{R}^{m}.
c. $\operatorname{Col} A$ is the set of all solutions of $A \mathbf{x}=\mathbf{b}$.
d. Nul A is the kernel of the mapping $\mathbf{x} \mapsto A \mathbf{x}$.
e. The range of a linear transformation is a vector space.
f. The set of all solutions of a homogeneous linear differential equation is the kernel of a linear transformation.
27. It can be shown that a solution of the system below is $x_{1}=3$, $x_{2}=2$, and $x_{3}=-1$. Use this fact and the theory from this section to explain why another solution is $x_{1}=30, x_{2}=20$, and $x_{3}=-10$. (Observe how the solutions are related, but make no other calculations.)

$$
\begin{array}{r}
x_{1}-3 x_{2}-3 x_{3}=0 \\
-2 x_{1}+4 x_{2}+2 x_{3}=0 \\
-x_{1}+5 x_{2}+7 x_{3}=0
\end{array}
$$

28. Consider the following two systems of equations:

$$
\begin{array}{rlrl}
5 x_{1}+x_{2}-3 x_{3} & =0 & 5 x_{1}+x_{2}-3 x_{3} & =0 \\
-9 x_{1}+2 x_{2}+5 x_{3} & =1 & -9 x_{1}+2 x_{2}+5 x_{3} & =5 \\
4 x_{1}+x_{2}-6 x_{3} & =9 & 4 x_{1}+x_{2}-6 x_{3} & =45
\end{array}
$$

It can be shown that the first system has a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)
29. Prove Theorem 3 as follows: Given an $m \times n$ matrix A, an element in $\operatorname{Col} A$ has the form $A \mathbf{x}$ for some \mathbf{x} in \mathbb{R}^{n}. Let $A \mathbf{x}$ and $A \mathbf{w}$ represent any two vectors in $\operatorname{Col} A$.
a. Explain why the zero vector is in $\operatorname{Col} A$.
b. Show that the vector $A \mathbf{x}+A \mathbf{w}$ is in $\operatorname{Col} A$.
c. Given a scalar c, show that $c(A \mathbf{x})$ is in $\operatorname{Col} A$.
30. Let $T: V \rightarrow W$ be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [Hint: Typical elements of the range have the form $T(\mathbf{x})$ and $T(\mathbf{w})$ for some \mathbf{x}, \mathbf{w} in V.]
31. Define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{l}\mathbf{p}(0) \\ \mathbf{p}(1)\end{array}\right]$. For instance, if $\mathbf{p}(t)=3+5 t+7 t^{2}$, then $T(\mathbf{p})=\left[\begin{array}{r}3 \\ 15\end{array}\right]$.
a. Show that T is a linear transformation. [Hint: For arbitrary polynomials \mathbf{p}, \mathbf{q} in \mathbb{P}_{2}, compute $T(\mathbf{p}+\mathbf{q})$ and $T(c \mathbf{p})$.
b. Find a polynomial \mathbf{p} in \mathbb{P}_{2} that spans the kernel of T, and describe the range of T.
32. Define a linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{l}\mathbf{p}(0) \\ \mathbf{p}(0)\end{array}\right]$. Find polynomials \mathbf{p}_{1} and \mathbf{p}_{2} in \mathbb{P}_{2} that span the kernel of T, and describe the range of T.
33. Let $M_{2 \times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by $T(A)=A+A^{T}$, where $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
a. Show that T is a linear transformation.
b. Let B be any element of $M_{2 \times 2}$ such that $B^{T}=B$. Find an A in $M_{2 \times 2}$ such that $T(A)=B$.
c. Show that the range of T is the set of B in $M_{2 \times 2}$ with the property that $B^{T}=B$.
d. Describe the kernel of T.
34. (Calculus required) Define $T: C[0,1] \rightarrow C[0,1]$ as follows: For \mathbf{f} in $C[0,1]$, let $T(\mathbf{f})$ be the antiderivative \mathbf{F} of \mathbf{f} such that $\mathbf{F}(0)=0$. Show that T is a linear transformation, and describe the kernel of T. (See the notation in Exercise 20 of Section 4.1.)
35. Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Given a subspace U of V, let $T(U)$ denote the set of all images of the form $T(\mathbf{x})$, where \mathbf{x} is in U. Show that $T(U)$ is a subspace of W.
36. Given $T: V \rightarrow W$ as in Exercise 35 , and given a subspace Z of W, let U be the set of all \mathbf{x} in V such that $T(\mathbf{x})$ is in Z. Show that U is a subspace of V.
37. [M] Determine whether \mathbf{w} is in the column space of A, the null space of A, or both, where

$$
\mathbf{w}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-3
\end{array}\right], \quad A=\left[\begin{array}{rrrr}
7 & 6 & -4 & 1 \\
-5 & -1 & 0 & -2 \\
9 & -11 & 7 & -3 \\
19 & -9 & 7 & 1
\end{array}\right]
$$

38. [M] Determine whether \mathbf{w} is in the column space of A, the null space of A, or both, where
$\mathbf{w}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right], \quad A=\left[\begin{array}{rrrr}-8 & 5 & -2 & 0 \\ -5 & 2 & 1 & -2 \\ 10 & -8 & 6 & -3 \\ 3 & -2 & 1 & 0\end{array}\right]$
39. $[\mathbf{M}]$ Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{5}$ denote the columns of the matrix A, where
$A=\left[\begin{array}{rrrrr}5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2\end{array}\right], \quad B=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{4}\end{array}\right]$
a. Explain why \mathbf{a}_{3} and \mathbf{a}_{5} are in the column space of B.
b. Find a set of vectors that spans $\operatorname{Nul} A$.
c. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ be defined by $T(\mathbf{x})=A \mathbf{x}$. Explain why T is neither one-to-one nor onto.
40. [M] Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $K=\operatorname{Span}\left\{\mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, where $\mathbf{v}_{1}=\left[\begin{array}{l}5 \\ 3 \\ 8\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}2 \\ -1 \\ 5\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{r}0 \\ -12 \\ -28\end{array}\right]$.
Then H and K are subspaces of \mathbb{R}^{3}. In fact, H and K are planes in \mathbb{R}^{3} through the origin, and they intersect in a line through $\mathbf{0}$. Find a nonzero vector \mathbf{w} that generates that line. [Hint: \mathbf{w} can be written as $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ and also as $c_{3} \mathbf{v}_{3}+c_{4} \mathbf{v}_{4}$. To build \mathbf{w}, solve the equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=c_{3} \mathbf{v}_{3}+c_{4} \mathbf{v}_{4}$ for the unknown $c_{j}{ }^{\prime}$'s.]

Mastering: Vector Space, Subspace,
$\operatorname{Col} A$, and Nul A 4-6

SOLUTIONS TO PRACTICE PROBLEMS

1. First method: W is a subspace of \mathbb{R}^{3} by Theorem 2 because W is the set of all solutions to a system of homogeneous linear equations (where the system has only one equation). Equivalently, W is the null space of the 1×3 matrix $A=\left[\begin{array}{lll}1 & -3 & -1\end{array}\right]$.
