4.2 Null Spaces, Column Spaces, and Linear Transformations 207

Typically, such a linear transformation is described in terms of one or more derivatives of a function. To explain this in any detail would take us too far afield at this point. So we consider only two examples. The first explains why the operation of differentiation is a linear transformation.

EXAMPLE 8 (Calculus required) Let V be the vector space of all real-valued functions f defined on an interval [a, b] with the property that they are differentiable and their derivatives are continuous functions on [a, b]. Let W be the vector space C[a, b]of all continuous functions on [a, b], and let $D : V \to W$ be the transformation that changes f in V into its derivative f'. In calculus, two simple differentiation rules are

$$D(f+g) = D(f) + D(g)$$
 and $D(cf) = cD(f)$

That is, *D* is a linear transformation. It can be shown that the kernel of *D* is the set of constant functions on [a, b] and the range of *D* is the set *W* of all continuous functions on [a, b].

EXAMPLE 9 (Calculus required) The differential equation

$$y'' + \omega^2 y = 0 \tag{4}$$

where ω is a constant, is used to describe a variety of physical systems, such as the vibration of a weighted spring, the movement of a pendulum, and the voltage in an inductance-capacitance electrical circuit. The set of solutions of (4) is precisely the kernel of the linear transformation that maps a function y = f(t) into the function $f''(t) + \omega^2 f(t)$. Finding an explicit description of this vector space is a problem in differential equations. The solution set turns out to be the space described in Exercise 19 in Section 4.1.

PRACTICE PROBLEMS

1. Let $W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a - 3b - c = 0 \right\}$. Show in two different ways that W is a

subspace of \mathbb{R}^3 . (Use two theorems.)

2. Let $A = \begin{bmatrix} 7 & -3 & 5 \\ -4 & 1 & -5 \\ -5 & 2 & -4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 7 \\ 6 \\ -3 \end{bmatrix}$. Suppose you know that

the equations $A\mathbf{x} = \mathbf{v}$ and $A\mathbf{x} = \mathbf{w}$ are both consistent. What can you say about the equation $A\mathbf{x} = \mathbf{v} + \mathbf{w}$?

3. Let A be an $n \times n$ matrix. If Col A = Nul A, show that Nul $A^2 = \mathbb{R}^n$.

In Exercises 3–6, find an explicit description of Nul A by listing vectors that span the null space.

3.
$$A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

In Exercises 7–14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b + c = 2 \right\}$$
8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r - 1 = s + 2t \right\}$$
9.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a - 2b = 4c \\ 2a = c + 3d \right\}$$
10.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a + 3b = c \\ b + c + a = d \right\}$$
11.
$$\left\{ \begin{bmatrix} b - 2d \\ 5 + d \\ b + 3d \\ d \end{bmatrix} : b, d \text{ real} \right\}$$
12.
$$\left\{ \begin{bmatrix} b - 5d \\ 2b \\ 2d + 1 \\ d \end{bmatrix} : b, d \text{ real} \right\}$$
13.
$$\left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \text{ real} \right\}$$
14.
$$\left\{ \begin{bmatrix} -a + 2b \\ a - 2b \\ 3a - 6b \end{bmatrix} : a, b \text{ real} \right\}$$

In Exercises 15 and 16, find A such that the given set is Col A.

`

$$15. \left\{ \begin{bmatrix} 2s+3t\\r+s-2t\\4r+s\\3r-s-t \end{bmatrix} : r, s, t \text{ real} \right\}$$
$$16. \left\{ \begin{bmatrix} b-c\\2b+c+d\\5c-4d\\d \end{bmatrix} : b, c, d \text{ real} \right\}$$

For the matrices in Exercises 17–20, (a) find k such that Nul A is a subspace of \mathbb{R}^k , and (b) find k such that Col A is a subspace of \mathbb{R}^k .

17.
$$A = \begin{bmatrix} 2 & -6 \\ -1 & 3 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}$$
18.
$$A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 0 & -5 \\ 0 & -5 & 7 \\ -5 & 7 & -2 \end{bmatrix}$$
19.
$$A = \begin{bmatrix} 4 & 5 & -2 & 6 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$
20.
$$A = \begin{bmatrix} 1 & -3 & 9 & 0 & -5 \end{bmatrix}$$

- **21.** With *A* as in Exercise 17, find a nonzero vector in Nul *A* and a nonzero vector in Col *A*.
- **22.** With *A* as in Exercise 3, find a nonzero vector in Nul *A* and a nonzero vector in Col *A*.

23. Let
$$A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Determine if \mathbf{w} is in Col A. Is \mathbf{w} in Nul A?

24. Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Determine if w is in Col A. Is w in Nul A?

In Exercises 25 and 26, A denotes an $m \times n$ matrix. Mark each statement True or False. Justify each answer.

- **25.** a. The null space of A is the solution set of the equation $A\mathbf{x} = \mathbf{0}$.
 - b. The null space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. The column space of A is the range of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - d. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then Col A is \mathbb{R}^m .
 - e. The kernel of a linear transformation is a vector space.
 - f. Col *A* is the set of all vectors that can be written as *A***x** for some **x**.

26. a. A null space is a vector space.

- b. The column space of an $m \times n$ matrix is in \mathbb{R}^m .
- c. Col *A* is the set of all solutions of $A\mathbf{x} = \mathbf{b}$.
- d. Nul *A* is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
- e. The range of a linear transformation is a vector space.
- f. The set of all solutions of a homogeneous linear differential equation is the kernel of a linear transformation.
- 27. It can be shown that a solution of the system below is $x_1 = 3$, $x_2 = 2$, and $x_3 = -1$. Use this fact and the theory from this section to explain why another solution is $x_1 = 30$, $x_2 = 20$, and $x_3 = -10$. (Observe how the solutions are related, but make no other calculations.)

$$x_1 - 3x_2 - 3x_3 = 0$$

$$-2x_1 + 4x_2 + 2x_3 = 0$$

$$-x_1 + 5x_2 + 7x_3 = 0$$

28. Consider the following two systems of equations:

$$5x_1 + x_2 - 3x_3 = 0 5x_1 + x_2 - 3x_3 = 0 -9x_1 + 2x_2 + 5x_3 = 1 -9x_1 + 2x_2 + 5x_3 = 5 4x_1 + x_2 - 6x_3 = 9 4x_1 + x_2 - 6x_3 = 45$$

It can be shown that the first system has a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

4.2 Null Spaces, Column Spaces, and Linear Transformations 209

- **29.** Prove Theorem 3 as follows: Given an $m \times n$ matrix A, an element in Col A has the form $A\mathbf{x}$ for some \mathbf{x} in \mathbb{R}^n . Let $A\mathbf{x}$ and $A\mathbf{w}$ represent any two vectors in Col A.
 - a. Explain why the zero vector is in $\operatorname{Col} A$.
 - b. Show that the vector $A\mathbf{x} + A\mathbf{w}$ is in Col A.
 - c. Given a scalar c, show that $c(A\mathbf{x})$ is in Col A.
- **30.** Let $T: V \to W$ be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [*Hint:* Typical elements of the range have the form $T(\mathbf{x})$ and $T(\mathbf{w})$ for some \mathbf{x}, \mathbf{w} in V.]

31. Define
$$T : \mathbb{P}_2 \to \mathbb{R}^2$$
 by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$. For instance, if $\mathbf{p}(t) = 3 + 5t + 7t^2$, then $T(\mathbf{p}) = \begin{bmatrix} 3 \\ 15 \end{bmatrix}$.

- a. Show that T is a linear transformation. [*Hint:* For arbitrary polynomials \mathbf{p} , \mathbf{q} in \mathbb{P}_2 , compute $T(\mathbf{p} + \mathbf{q})$ and $T(c\mathbf{p})$.]
- b. Find a polynomial **p** in \mathbb{P}_2 that spans the kernel of *T*, and describe the range of *T*.
- **32.** Define a linear transformation $T : \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(0) \end{bmatrix}$. Find polynomials \mathbf{p}_1 and \mathbf{p}_2 in \mathbb{P}_2 that

span the kernel of T, and describe the range of T.

- **33.** Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A + A^T$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - a. Show that *T* is a linear transformation.
 - b. Let B be any element of $M_{2\times 2}$ such that $B^T = B$. Find an A in $M_{2\times 2}$ such that T(A) = B.
 - c. Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T = B$.
 - d. Describe the kernel of T.

34. (*Calculus required*) Define $T : C[0, 1] \rightarrow C[0, 1]$ as follows: For **f** in C[0, 1], let $T(\mathbf{f})$ be the antiderivative **F** of **f** such that $\mathbf{F}(0) = 0$. Show that T is a linear transformation, and describe the kernel of T. (See the notation in Exercise 20 of Section 4.1.)

- **35.** Let *V* and *W* be vector spaces, and let $T : V \to W$ be a linear transformation. Given a subspace *U* of *V*, let T(U) denote the set of all images of the form $T(\mathbf{x})$, where \mathbf{x} is in *U*. Show that T(U) is a subspace of *W*.
- **36.** Given $T: V \to W$ as in Exercise 35, and given a subspace Z of W, let U be the set of all \mathbf{x} in V such that $T(\mathbf{x})$ is in Z. Show that U is a subspace of V.
- **37.** [**M**] Determine whether **w** is in the column space of *A*, the null space of *A*, or both, where

$$\mathbf{w} = \begin{bmatrix} 1\\1\\-1\\-3 \end{bmatrix}, \quad A = \begin{bmatrix} 7 & 6 & -4 & 1\\-5 & -1 & 0 & -2\\9 & -11 & 7 & -3\\19 & -9 & 7 & 1 \end{bmatrix}$$

38. [M] Determine whether w is in the column space of *A*, the null space of *A*, or both, where

$$\mathbf{w} = \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}, \quad A = \begin{bmatrix} -8 & 5 & -2 & 0\\-5 & 2 & 1 & -2\\10 & -8 & 6 & -3\\3 & -2 & 1 & 0 \end{bmatrix}$$

39. [M] Let $\mathbf{a}_1, \ldots, \mathbf{a}_5$ denote the columns of the matrix A, where

$$A = \begin{bmatrix} 3 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_4 \end{bmatrix}$$

- a. Explain why \mathbf{a}_3 and \mathbf{a}_5 are in the column space of B.
- b. Find a set of vectors that spans Nul A.
- c. Let $T : \mathbb{R}^5 \to \mathbb{R}^4$ be defined by $T(\mathbf{x}) = A\mathbf{x}$. Explain why T is neither one-to-one nor onto.
- **40.** [M] Let $H = \text{Span} \{ \mathbf{v}_1, \mathbf{v}_2 \}$ and $K = \text{Span} \{ \mathbf{v}_3, \mathbf{v}_4 \}$, where

$$\mathbf{v}_1 = \begin{bmatrix} 5\\3\\8 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1\\3\\4 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2\\-1\\5 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0\\-12\\-28 \end{bmatrix}.$$

Then *H* and *K* are subspaces of \mathbb{R}^3 . In fact, *H* and *K* are planes in \mathbb{R}^3 through the origin, and they intersect in a line through **0**. Find a nonzero vector **w** that generates that line. [*Hint*: **w** can be written as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ and also as $c_3\mathbf{v}_3 + c_4\mathbf{v}_4$. To build **w**, solve the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = c_3\mathbf{v}_3 + c_4\mathbf{v}_4$ for the unknown c_j 's.]

Aastering: Vector Space, Subspace, Sol A, and Nul A 4–6

SOLUTIONS TO PRACTICE PROBLEMS

1. *First method: W* is a subspace of \mathbb{R}^3 by Theorem 2 because *W* is the set of all solutions to a system of homogeneous linear equations (where the system has only one equation). Equivalently, *W* is the null space of the 1×3 matrix $A = \begin{bmatrix} 1 & -3 & -1 \end{bmatrix}$.

T