

The conclusions of Theorem 10 hold whenever S is a region in \mathbb{R}^{2} with finite area or a region in \mathbb{R}^{3} with finite volume.

EXAMPLE 5 Let a and b be positive numbers. Find the area of the region E bounded by the ellipse whose equation is

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1
$$

SOLUTION We claim that E is the image of the unit disk D under the linear transformation T determined by the matrix $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$, because if $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $\mathbf{x}=A \mathbf{u}$, then

$$
u_{1}=\frac{x_{1}}{a} \quad \text { and } \quad u_{2}=\frac{x_{2}}{b}
$$

It follows that \mathbf{u} is in the unit disk, with $u_{1}^{2}+u_{2}^{2} \leq 1$, if and only if \mathbf{x} is in E, with $\left(x_{1} / a\right)^{2}+\left(x_{2} / b\right)^{2} \leq 1$. By the generalization of Theorem 10,

$$
\begin{aligned}
\{\text { area of ellipse }\} & =\{\text { area of } T(D)\} \\
& =|\operatorname{det} A| \cdot\{\text { area of } D\} \\
& =a b \cdot \pi(1)^{2}=\pi a b
\end{aligned}
$$

PRACTICE PROBLEM

Let S be the parallelogram determined by the vectors $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$, and let $A=\left[\begin{array}{rr}1 & -.1 \\ 0 & 2\end{array}\right]$. Compute the area of the image of S under the mapping $\mathbf{x} \mapsto A \mathbf{x}$.

3.3 EXERCISES

Use Cramer's rule to compute the solutions of the systems in Exercises 1-6.

1. $5 x_{1}+7 x_{2}=3$
$2 x_{1}+4 x_{2}=1$
2. $4 x_{1}+x_{2}=6$
$3 x_{1}+2 x_{2}=7$
3. $3 x_{1}-2 x_{2}=3$
$-4 x_{1}+6 x_{2}=-5$
4. $-5 x_{1}+2 x_{2}=9$

$$
\text { 5. } \begin{aligned}
x_{1}+x_{2} & =3 \\
-3 x_{1}+2 x_{3} & =0 \\
x_{2}-2 x_{3} & =2
\end{aligned}
$$

6. $x_{1}+3 x_{2}+x_{3}=4$
$-x_{1}+\quad 2 x_{3}=2$
$3 x_{1}+x_{2}=2$

In Exercises 7-10, determine the values of the parameter s for which the system has a unique solution, and describe the solution.
7. $6 s x_{1}+4 x_{2}=5$
$9 x_{1}+2 s x_{2}=-2$
8. $3 s x_{1}+5 x_{2}=3$
$12 x_{1}+5 s x_{2}=2$
9. $s x_{1}+2 s x_{2}=-1$
$3 x_{1}+6 s x_{2}=4$
10. $s x_{1}-2 x_{2}=1$
$4 s x_{1}+4 s x_{2}=2$

In Exercises 11-16, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.
11. $\left[\begin{array}{rrr}0 & -2 & -1 \\ 5 & 0 & 0 \\ -1 & 1 & 1\end{array}\right]$
12. $\left[\begin{array}{rrr}1 & 1 & 3 \\ -2 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$
13. $\left[\begin{array}{lll}3 & 5 & 4 \\ 1 & 0 & 1 \\ 2 & 1 & 1\end{array}\right]$
14. $\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 4\end{array}\right]$
15. $\left[\begin{array}{rrr}5 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 3 & -1\end{array}\right]$
16. $\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & -2\end{array}\right]$
17. Show that if A is 2×2, then Theorem 8 gives the same formula for A^{-1} as that given by Theorem 4 in Section 2.2.
18. Suppose that all the entries in A are integers and $\operatorname{det} A=1$. Explain why all the entries in A^{-1} are integers.

In Exercises 19-22, find the area of the parallelogram whose vertices are listed.
19. $(0,0),(5,2),(6,4),(11,6)$
20. $(0,0),(-2,4),(4,-5),(2,-1)$
21. $(-2,0),(0,3),(1,3),(-1,0)$
22. $(0,-2),(5,-2),(-3,1),(2,1)$
23. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,0,-3),(1,2,4)$, and $(5,1,0)$.
24. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,3,0),(-2,0,2)$, and $(-1,3,-1)$.
25. Use the concept of volume to explain why the determinant of a 3×3 matrix A is zero if and only if A is not invertible. Do not appeal to Theorem 4 in Section 3.2. [Hint: Think about the columns of A.]
26. Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation, and let \mathbf{p} be a vector and S a set in \mathbb{R}^{m}. Show that the image of $\mathbf{p}+S$ under T is the translated set $T(\mathbf{p})+T(S)$ in \mathbb{R}^{n}.
27. Let S be the parallelogram determined by the vectors $\mathbf{b}_{1}=\left[\begin{array}{r}-2 \\ 3\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$, and let $A=\left[\begin{array}{rr}6 & -3 \\ -3 & 2\end{array}\right]$. Compute the area of the image of S under the mapping $\mathbf{x} \mapsto A \mathbf{x}$.
28. Repeat Exercise 27 with $\mathbf{b}_{1}=\left[\begin{array}{r}4 \\ -7\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $A=\left[\begin{array}{ll}5 & 2 \\ 1 & 1\end{array}\right]$.
29. Find a formula for the area of the triangle whose vertices are $\mathbf{0}, \mathbf{v}_{1}$, and \mathbf{v}_{2} in \mathbb{R}^{2}.
30. Let R be the triangle with vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. Show that
$\{$ area of triangle $\}=\frac{1}{2} \operatorname{det}\left[\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right]$
[Hint: Translate R to the origin by subtracting one of the vertices, and use Exercise 29.]
31. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation determined by the matrix $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$, where a, b, and c are
positive numbers. Let S be the unit ball, whose bounding surface has the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$.
a. Show that $T(S)$ is bounded by the ellipsoid with the equation $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1$.
b. Use the fact that the volume of the unit ball is $4 \pi / 3$ to determine the volume of the region bounded by the ellipsoid in part (a).
32. Let S be the tetrahedron in \mathbb{R}^{3} with vertices at the vectors $\mathbf{0}$, $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3}, and let S^{\prime} be the tetrahedron with vertices at vectors $\mathbf{0}, \mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}. See the figure.

a. Describe a linear transformation that maps S onto S^{\prime}.
b. Find a formula for the volume of the tetrahedron S^{\prime} using the fact that
$\{$ volume of $S\}=(1 / 3) \cdot\{$ area of base $\} \cdot\{$ height $\}$
33. [M] Test the inverse formula of Theorem 8 for a random 4×4 matrix A. Use your matrix program to compute the cofactors of the 3×3 submatrices, construct the adjugate, and set $B=(\operatorname{adj} A) /(\operatorname{det} A)$. Then compute $B-\operatorname{inv}(A)$, where $\operatorname{inv}(A)$ is the inverse of A as computed by the matrix program. Use floating point arithmetic with the maximum possible number of decimal places. Report your results.
34. [M] Test Cramer's rule for a random 4×4 matrix A and a random 4×1 vector \mathbf{b}. Compute each entry in the solution of $A \mathbf{x}=\mathbf{b}$, and compare these entries with the entries in $A^{-1} \mathbf{b}$. Write the command (or keystrokes) for your matrix program that uses Cramer's rule to produce the second entry of \mathbf{x}.
35. [M] If your version of MATLAB has the flops command, use it to count the number of floating point operations to compute A^{-1} for a random 30×30 matrix. Compare this number with the number of flops needed to form $(\operatorname{adj} A) /(\operatorname{det} A)$.

SOLUTION TO PRACTICE PROBLEM

The area of S is $\left|\operatorname{det}\left[\begin{array}{ll}1 & 5 \\ 3 & 1\end{array}\right]\right|=14$, and $\operatorname{det} A=2$. By Theorem 10 , the area of the image of S under the mapping $\mathbf{x} \mapsto A \mathbf{x}$ is

$$
|\operatorname{det} A| \cdot\{\text { area of } S\}=2 \cdot 14=28
$$

