The conclusions of Theorem 10 hold whenever S is a region in \mathbb{R}^2 with finite area or a region in \mathbb{R}^3 with finite volume.

EXAMPLE 5 Let a and b be positive numbers. Find the area of the region E bounded by the ellipse whose equation is

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$$

SOLUTION We claim that E is the image of the unit disk D under the linear transformation T determined by the matrix $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, because if $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and $\mathbf{x} = A\mathbf{u}$, then $u_1 = \frac{x_1}{a}$ and $u_2 = \frac{x_2}{b}$

It follows that **u** is in the unit disk, with $u_1^2 + u_2^2 \le 1$, if and only if **x** is in *E*, with $(x_1/a)^2 + (x_2/b)^2 \le 1$. By the generalization of Theorem 10,

{area of ellipse} = {area of
$$T(D)$$
}
= $|\det A| \cdot \{\text{area of } D\}$
= $ab \cdot \pi (1)^2 = \pi ab$

PRACTICE PROBLEM

Let *S* be the parallelogram determined by the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$, and let $A = \begin{bmatrix} 1 & -.1 \\ 0 & 2 \end{bmatrix}$. Compute the area of the image of S under the mapping $\mathbf{x} \mapsto A\mathbf{x}$.

3.3 EXERCISES

Use Cramer's rule to compute the solutions of the systems in Exercises 1-6.

1. $5x_1 + 7x_2 = 3$	2. $4x_1 + x_2 = 6$
$2x_1 + 4x_2 = 1$	$3x_1 + 2x_2 = 7$
3. $3x_1 - 2x_2 = 3$	4. $-5x_1 + 2x_2 = 9$
$-4x_1 + 6x_2 = -5$	$3x_1 - x_2 = -4$
5. $x_1 + x_2 = 3$	6. $x_1 + 3x_2 + x_3 = 4$
$-3x_1 + 2x_3 = 0$	$-x_1 + \qquad 2x_3 = 2$
$x_2 - 2x_3 = 2$	$3x_1 + x_2 = 2$

In Exercises 7-10, determine the values of the parameter s for which the system has a unique solution, and describe the solution.

7. $6sx_1 + 4x_2 = 5$ **8.** $3sx_1 + 5x_2 = 3$ $9x_1 + 2sx_2 = -2 12x_1 + 5sx_2 = 2$

9.
$$sx_1 + 2sx_2 = -1$$

 $3x_1 + 6sx_2 = 4$
10. $sx_1 - 2x_2 = 1$
 $4sx_1 + 4sx_2 = 2$

In Exercises 11-16, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

11.	$\begin{bmatrix} 0\\5\\-1 \end{bmatrix}$	$-2 \\ 0 \\ 1$	$\begin{bmatrix} -1\\0\\1 \end{bmatrix}$	$12. \begin{bmatrix} 1 & 1 & 3 \\ -2 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
13.	$\begin{bmatrix} 3\\1\\2 \end{bmatrix}$	5 0 1	4 1 1	$14. \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 4 \end{bmatrix}$
15.	$\begin{bmatrix} 5\\ -1\\ -2 \end{bmatrix}$	0 1 3	$\begin{bmatrix} 0\\0\\-1\end{bmatrix}$	16. $\begin{bmatrix} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & -2 \end{bmatrix}$

- 17. Show that if A is 2×2 , then Theorem 8 gives the same formula for A^{-1} as that given by Theorem 4 in Section 2.2.
- 18. Suppose that all the entries in A are integers and det A = 1. Explain why all the entries in A^{-1} are integers.

In Exercises 19-22, find the area of the parallelogram whose vertices are listed.

- **19.** (0,0), (5,2), (6,4), (11,6)
- **20.** (0,0), (-2,4), (4,-5), (2,-1)
- **21.** (-2, 0), (0, 3), (1, 3), (-1, 0)
- **22.** (0, -2), (5, -2), (-3, 1), (2, 1)
- 23. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1, 0, -3), (1, 2, 4), and (5, 1, 0).
- 24. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1, 3, 0), (-2, 0, 2), and (-1, 3, -1).
- 25. Use the concept of volume to explain why the determinant of a 3×3 matrix A is zero if and only if A is not invertible. Do not appeal to Theorem 4 in Section 3.2. [Hint: Think about the columns of A.]
- **26.** Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation, and let **p** be a vector and S a set in \mathbb{R}^m . Show that the image of $\mathbf{p} + S$ under T is the translated set $T(\mathbf{p}) + T(S)$ in \mathbb{R}^n .
- 27. Let S be the parallelogram determined by the vectors $\mathbf{b}_1 = \begin{bmatrix} -2\\ 3 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} -2\\ 5 \end{bmatrix}$, and let $A = \begin{bmatrix} 6 & -3\\ -3 & 2 \end{bmatrix}$. Compute the area of the image of S under the mapping
- **28.** Repeat Exercise 27 with $\mathbf{b}_1 = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $A = \begin{bmatrix} 5 & 2 \\ 1 & 1 \end{bmatrix}.$
- 29. Find a formula for the area of the triangle whose vertices are **0**, \mathbf{v}_1 , and \mathbf{v}_2 in \mathbb{R}^2 .
- **30.** Let *R* be the triangle with vertices at (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) . Show that

{area of triangle} =
$$\frac{1}{2} \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

[Hint: Translate R to the origin by subtracting one of the vertices, and use Exercise 29.]

31. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation determined by the matrix $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, where a, b, and c are

positive numbers. Let S be the unit ball, whose bounding surface has the equation $x_1^2 + x_2^2 + x_3^2 = 1$.

- a. Show that T(S) is bounded by the ellipsoid with the equation $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1.$
- b. Use the fact that the volume of the unit ball is $4\pi/3$ to determine the volume of the region bounded by the ellipsoid in part (a).
- **32.** Let *S* be the tetrahedron in \mathbb{R}^3 with vertices at the vectors **0**, \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 , and let S' be the tetrahedron with vertices at vectors $\mathbf{0}$, \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . See the figure.

- a. Describe a linear transformation that maps S onto S'.
- b. Find a formula for the volume of the tetrahedron S' using the fact that

{volume of S} = $(1/3) \cdot \{\text{area of base}\} \cdot \{\text{height}\}$

- 33. [M] Test the inverse formula of Theorem 8 for a random 4×4 matrix A. Use your matrix program to compute the cofactors of the 3×3 submatrices, construct the adjugate, and set $B = (\operatorname{adj} A)/(\operatorname{det} A)$. Then compute $B - \operatorname{inv}(A)$, where inv(A) is the inverse of A as computed by the matrix program. Use floating point arithmetic with the maximum possible number of decimal places. Report your results.
- **34.** [M] Test Cramer's rule for a random 4×4 matrix A and a random 4×1 vector **b**. Compute each entry in the solution of $A\mathbf{x} = \mathbf{b}$, and compare these entries with the entries in $A^{-1}\mathbf{b}$. Write the command (or keystrokes) for your matrix program that uses Cramer's rule to produce the second entry of \mathbf{x} .
- 35. [M] If your version of MATLAB has the flops command, use it to count the number of floating point operations to compute A^{-1} for a random 30 \times 30 matrix. Compare this number with the number of flops needed to form $(\operatorname{adj} A)/(\det A)$.

SOLUTION TO PRACTICE PROBLEM

The area of S is $\left| \det \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix} \right| = 14$, and $\det A = 2$. By Theorem 10, the area of the image of S under the mapping $\mathbf{x} \mapsto A\mathbf{x}$ is

 $|\det A| \cdot \{ \text{area of } S \} = 2 \cdot 14 = 28$

I.