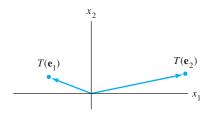
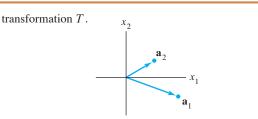
1.9 EXERCISES

In Exercises 1–10, assume that T is a linear transformation. Find the standard matrix of T.

- **1.** $T : \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e}_1) = (3, 1, 3, 1)$ and $T(\mathbf{e}_2) = (-5, 2, 0, 0)$, where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.
- **2.** $T : \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1,3)$, $T(\mathbf{e}_2) = (4,-7)$, and $T(\mathbf{e}_3) = (-5,4)$, where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the columns of the 3×3 identity matrix.
- 3. $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $3\pi/2$ radians (counterclockwise).
- 4. $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $-\pi/4$ radians (clockwise). [*Hint:* $T(\mathbf{e}_1) = (1/\sqrt{2}, -1/\sqrt{2})$.]
- T: ℝ² → ℝ² is a vertical shear transformation that maps e₁ into e₁ 2e₂ but leaves the vector e₂ unchanged.
- 6. $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a horizontal shear transformation that leaves \mathbf{e}_1 unchanged and maps \mathbf{e}_2 into $\mathbf{e}_2 + 3\mathbf{e}_1$.
- 7. $T : \mathbb{R}^2 \to \mathbb{R}^2$ first rotates points through $-3\pi/4$ radian (clockwise) and then reflects points through the horizontal x_1 -axis. [*Hint*: $T(\mathbf{e}_1) = (-1/\sqrt{2}, 1/\sqrt{2})$.]
- 8. $T : \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$.
- **9.** $T : \mathbb{R}^2 \to \mathbb{R}^2$ first performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 2\mathbf{e}_1$ (leaving \mathbf{e}_1 unchanged) and then reflects points through the line $x_2 = -x_1$.
- **10.** $T : \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the vertical x_2 -axis and then rotates points $\pi/2$ radians.
- 11. A linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the x_1 -axis and then reflects points through the x_2 -axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
- **12.** Show that the transformation in Exercise 8 is merely a rotation about the origin. What is the angle of the rotation?
- **13.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$ are the vectors shown in the figure. Using the figure, sketch the vector T(2, 1).



14. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2]$, where \mathbf{a}_1 and \mathbf{a}_2 are shown in the figure. Using the figure, draw the image of $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ under the



In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

15.
$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_1 - 2x_3 \\ 4x_1 \\ x_1 - x_2 + x_3 \end{bmatrix}$$

16.
$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ -2x_1 + x_2 \\ x_1 \end{bmatrix}$$

In Exercises 17–20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_1, x_2, \ldots are not vectors but are entries in vectors.

17. $T(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_3, x_3 + x_4)$

18.
$$T(x_1, x_2) = (2x_2 - 3x_1, x_1 - 4x_2, 0, x_2)$$

- **19.** $T(x_1, x_2, x_3) = (x_1 5x_2 + 4x_3, x_2 6x_3)$
- **20.** $T(x_1, x_2, x_3, x_4) = 2x_1 + 3x_3 4x_4$ $(T : \mathbb{R}^4 \to \mathbb{R})$
- **21.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 5x_2)$. Find **x** such that $T(\mathbf{x}) = (3, 8)$.
- **22.** Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T(x_1, x_2) = (x_1 2x_2, -x_1 + 3x_2, 3x_1 2x_2)$. Find **x** such that $T(\mathbf{x}) = (-1, 4, 9)$.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- **23.** a. A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - b. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle φ , then *T* is a linear transformation.
 - c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - d. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector **x** in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
 - e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot be one-to-one.
- **24.** a. Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.
 - b. The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix.

L

80 CHAPTER 1 Linear Equations in Linear Algebra

- c. The standard matrix of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$, where *a* and *d* are ± 1 .
- d. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m .
- e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot map \mathbb{R}^2 onto \mathbb{R}^3 .

In Exercises 25–28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.

- **25.** The transformation in Exercise 17
- **26.** The transformation in Exercise 2
- **27.** The transformation in Exercise 19
- 28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T. Use the notation of Example 1 in Section 1.2.

- **29.** $T : \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one.
- **30.** $T : \mathbb{R}^4 \to \mathbb{R}^3$ is onto.
- **31.** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with *A* its standard matrix. Complete the following statement to make it true: "*T* is one-to-one if and only if *A* has _____ pivot columns." Explain why the statement is true. [*Hint:* Look in the exercises for Section 1.7.]
- **32.** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with *A* its standard matrix. Complete the following statement to make it true: "*T* maps \mathbb{R}^n onto \mathbb{R}^m if and only if *A* has ______ pivot columns." Find some theorems that explain why the statement is true.
- **33.** Verify the uniqueness of *A* in Theorem 10. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $T(\mathbf{x}) = B\mathbf{x}$ for some

WEB

 $m \times n$ matrix B. Show that if A is the standard matrix for T, then A = B. [*Hint:* Show that A and B have the same columns.]

- **34.** Why is the question "Is the linear transformation *T* onto?" an existence question?
- **35.** If a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m , can you give a relation between *m* and *n*? If *T* is one-to-one, what can you say about *m* and *n*?
- **36.** Let $S : \mathbb{R}^p \to \mathbb{R}^n$ and $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations. Show that the mapping $\mathbf{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbb{R}^p to \mathbb{R}^m). [*Hint:* Compute $T(S(c\mathbf{u} + d\mathbf{v}))$ for \mathbf{u}, \mathbf{v} in \mathbb{R}^p and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]

[M] In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps \mathbb{R}^5 onto \mathbb{R}^5 . Justify your answers.

37.	$\begin{bmatrix} -5\\8\\4\\-3 \end{bmatrix}$	$ \begin{array}{r} 10 \\ 3 \\ -9 \\ -2 \end{array} $	-5 -4 5 5	4 7 -3 4		38.	$\begin{bmatrix} 7\\10\\12\\-8 \end{bmatrix}$	5 6 8 -6	4 16 12 -2	$\begin{bmatrix} -9\\ -4\\ 7\\ 5 \end{bmatrix}$
39.	$\begin{bmatrix} 4\\6\\-7\\3\\-5 \end{bmatrix}$	$-7 \\ -8 \\ 10 \\ -5 \\ 6$	3 5 -8 4 -6	7 12 -9 2 -7	$\begin{bmatrix} 5\\-8\\14\\-6\\3 \end{bmatrix}$					
40.	$\begin{bmatrix} 9\\14\\-8\\-5\\13 \end{bmatrix}$	13 15 -9 -6 14	5 -7 12 -8 15	$ \begin{array}{r} 6 \\ -6 \\ -5 \\ 9 \\ 2 \end{array} $						

SOLUTION TO PRACTICE PROBLEMS

1. Follow what happens to \mathbf{e}_1 and \mathbf{e}_2 . See Figure 5. First, \mathbf{e}_1 is unaffected by the shear and then is reflected into $-\mathbf{e}_1$. So $T(\mathbf{e}_1) = -\mathbf{e}_1$. Second, \mathbf{e}_2 goes to $\mathbf{e}_2 - .5\mathbf{e}_1$ by the shear transformation. Since reflection through the x_2 -axis changes \mathbf{e}_1 into $-\mathbf{e}_1$ and

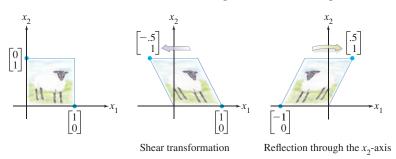


FIGURE 5 The composition of two transformations.

SECOND REVISED PAGES aptara