1.9 EXERCISES

In Exercises 1-10, assume that T is a linear transformation. Find the standard matrix of T.

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1)$ and $T\left(\mathbf{e}_{2}\right)=(-5,2,0,0)$, where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.
2. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad T\left(\mathbf{e}_{1}\right)=(1,3), \quad T\left(\mathbf{e}_{2}\right)=(4,-7), \quad$ and $T\left(\mathbf{e}_{3}\right)=(-5,4)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are the columns of the 3×3 identity matrix.
3. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $3 \pi / 2$ radians (counterclockwise).
4. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $-\pi / 4$ radians (clockwise). [Hint: $T\left(\mathbf{e}_{1}\right)=(1 / \sqrt{2},-1 / \sqrt{2})$.]
5. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a vertical shear transformation that maps \mathbf{e}_{1} into $\mathbf{e}_{1}-2 \mathbf{e}_{2}$ but leaves the vector \mathbf{e}_{2} unchanged.
6. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a horizontal shear transformation that leaves \mathbf{e}_{1} unchanged and maps \mathbf{e}_{2} into $\mathbf{e}_{2}+3 \mathbf{e}_{1}$.
7. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first rotates points through $-3 \pi / 4$ radian (clockwise) and then reflects points through the horizontal x_{1}-axis. [Hint: $T\left(\mathbf{e}_{1}\right)=(-1 / \sqrt{2}, 1 / \sqrt{2})$.]
8. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the horizontal x_{1} axis and then reflects points through the line $x_{2}=x_{1}$.
9. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first performs a horizontal shear that transforms \mathbf{e}_{2} into $\mathbf{e}_{2}-2 \mathbf{e}_{1}$ (leaving \mathbf{e}_{1} unchanged) and then reflects points through the line $x_{2}=-x_{1}$.
10. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the vertical x_{2}-axis and then rotates points $\pi / 2$ radians.
11. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the x_{1}-axis and then reflects points through the $x_{2}{ }^{-}$ axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
12. Show that the transformation in Exercise 8 is merely a rotation about the origin. What is the angle of the rotation?
13. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that $T\left(\mathbf{e}_{1}\right)$ and $T\left(\mathbf{e}_{2}\right)$ are the vectors shown in the figure. Using the figure, sketch the vector $T(2,1)$.

14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$, where \mathbf{a}_{1} and \mathbf{a}_{2} are shown in the figure. Using the figure, draw the image of $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ under the
transformation T.

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.
15. $\left[\begin{array}{lll}? & ? & ? \\ ? & ? & ? \\ ? & ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}3 x_{1}-2 x_{3} \\ 4 x_{1} \\ x_{1}-x_{2}+x_{3}\end{array}\right]$
16. $\left[\begin{array}{ll}? & ? \\ ? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}-x_{2} \\ -2 x_{1}+x_{2} \\ x_{1}\end{array}\right]$

In Exercises 17-20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_{1}, x_{2}, \ldots are not vectors but are entries in vectors.
17. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)$
18. $T\left(x_{1}, x_{2}\right)=\left(2 x_{2}-3 x_{1}, x_{1}-4 x_{2}, 0, x_{2}\right)$
19. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)$
20. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{1}+3 x_{3}-4 x_{4} \quad\left(T: \mathbb{R}^{4} \rightarrow \mathbb{R}\right)$
21. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 4 x_{1}+5 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=$ $(3,8)$.
22. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2},-x_{1}+3 x_{2}, 3 x_{1}-2 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=(-1,4,9)$.
In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
b. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors about the origin through an angle φ, then T is a linear transformation.
c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every vector \mathbf{x} in \mathbb{R}^{n} maps onto some vector in \mathbb{R}^{m}.
e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ cannot be one-to-one.
24. a. Notevery linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
b. The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images of the columns of the $n \times n$ identity matrix.
c. The standard matrix of a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\left[\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right]$, where a and d are ± 1.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps onto a unique vector in \mathbb{R}^{m}.
e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ cannot map \mathbb{R}^{2} onto \mathbb{R}^{3}.

In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
25. The transformation in Exercise 17
26. The transformation in Exercise 2
27. The transformation in Exercise 19
28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T. Use the notation of Example 1 in Section 1.2.
29. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one.
30. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto.
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T is one-to-one if and only if A has \qquad pivot columns." Explain why the statement is true. [Hint: Look in the exercises for Section 1.7.]
32. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if A has pivot columns." Find some theorems that explain why the statement is true.
33. Verify the uniqueness of A in Theorem 10 . Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\mathbf{x})=B \mathbf{x}$ for some
$m \times n$ matrix B. Show that if A is the standard matrix for T, then $A=B$. [Hint: Show that A and B have the same columns.]
34. Why is the question "Is the linear transformation T onto?" an existence question?
35. If a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}, can you give a relation between m and n ? If T is one-to-one, what can you say about m and n ?
36. Let $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear transformations. Show that the mapping $\mathbf{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbb{R}^{p} to $\left.\mathbb{R}^{m}\right)$. [Hint: Compute $T(S(c \mathbf{u}+d \mathbf{v}))$ for \mathbf{u}, \mathbf{v} in \mathbb{R}^{p} and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]
[M] In Exercises 37-40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40 , decide if T maps \mathbb{R}^{5} onto \mathbb{R}^{5}. Justify your answers.
37. $\left[\begin{array}{rrrr}-5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4\end{array}\right]$
38. $\left[\begin{array}{rrrr}7 & 5 & 4 & -9 \\ 10 & 6 & 16 & -4 \\ 12 & 8 & 12 & 7 \\ -8 & -6 & -2 & 5\end{array}\right]$
39. $\left[\begin{array}{rrrrr}4 & -7 & 3 & 7 & 5 \\ 6 & -8 & 5 & 12 & -8 \\ -7 & 10 & -8 & -9 & 14 \\ 3 & -5 & 4 & 2 & -6 \\ -5 & 6 & -6 & -7 & 3\end{array}\right]$
40. $\left[\begin{array}{rrrrr}9 & 13 & 5 & 6 & -1 \\ 14 & 15 & -7 & -6 & 4 \\ -8 & -9 & 12 & -5 & -9 \\ -5 & -6 & -8 & 9 & 8 \\ 13 & 14 & 15 & 2 & 11\end{array}\right]$

SOLUTION TO PRACTICE PROBLEMS

1. Follow what happens to \mathbf{e}_{1} and \mathbf{e}_{2}. See Figure 5. First, \mathbf{e}_{1} is unaffected by the shear and then is reflected into $-\mathbf{e}_{1}$. So $T\left(\mathbf{e}_{1}\right)=-\mathbf{e}_{1}$. Second, \mathbf{e}_{2} goes to $\mathbf{e}_{2}-.5 \mathbf{e}_{1}$ by the shear transformation. Since reflection through the x_{2}-axis changes \mathbf{e}_{1} into $-\mathbf{e}_{1}$ and

Shear transformation

Reflection through the x_{2}-axis

FIGURE 5 The composition of two transformations.

