2. If x and y are production vectors, then the total cost vector associated with the combined production $\mathbf{x} + \mathbf{y}$ is precisely the sum of the cost vectors $T(\mathbf{x})$ and $T(\mathbf{y})$.

PRACTICE PROBLEMS

- **1.** Suppose $T : \mathbb{R}^5 \to \mathbb{R}^2$ and $T(\mathbf{x}) = A\mathbf{x}$ for some matrix A and for each \mathbf{x} in \mathbb{R}^5 . How many rows and columns does A have?
- **2.** Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Give a geometric description of the transformation $\mathbf{x} \mapsto A\mathbf{x}$.
- 3. The line segment from 0 to a vector **u** is the set of points of the form $t\mathbf{u}$, where $0 \le t \le 1$. Show that a linear transformation T maps this segment into the segment between 0 and $T(\mathbf{u})$.

1.8 EXERCISES

1. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, and define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find the images under T of $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.

2. Let
$$A = \begin{bmatrix} .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$
Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.

In Exercises 3–6, with T defined by $T(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b} , and determine whether \mathbf{x} is unique.

3.
$$A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 \\ 7 \\ -3 \end{bmatrix}$$

4. $A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & -4 \\ 3 & -5 & -9 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 6 \\ -7 \\ -9 \end{bmatrix}$
5. $A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$
6. $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}$

- 7. Let A be a 6×5 matrix. What must a and b be in order to define $T : \mathbb{R}^a \to \mathbb{R}^b$ by $T(\mathbf{x}) = A\mathbf{x}$?
- 8. How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^4 into \mathbb{R}^5 by the rule $T(\mathbf{x}) = A\mathbf{x}$?

For Exercises 9 and 10, find all \mathbf{x} in \mathbb{R}^4 that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A\mathbf{x}$ for the given matrix A.

$$\mathbf{9.} \ A = \begin{bmatrix} 1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4 \end{bmatrix}$$

10.
$$A = \begin{bmatrix} 1 & 3 & 9 & 2 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -2 & 3 & 0 & 5 \end{bmatrix}$$

11. Let $\mathbf{b} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, and let A be the matrix in Exercise 9. Is **b** in the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$? Why or why not?

12. Let
$$\mathbf{b} = \begin{bmatrix} -1 \\ 3 \\ -1 \\ 4 \end{bmatrix}$$
, and let *A* be the matrix in Exercise 10. Is

b in the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$? Why or why not?

In Exercises 13–16, use a rectangular coordinate system to plot
$$\mathbf{u} = \begin{bmatrix} 5\\2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -2\\4 \end{bmatrix}$$
, and their images under the given transfor-

mation *T*. (Make a separate and reasonably large sketch for each exercise.) Describe geometrically what *T* does to each vector \mathbf{x} in \mathbb{R}^2 .

13.
$$T(\mathbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

14.
$$T(\mathbf{x}) = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

15.
$$T(\mathbf{x}) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

16.
$$T(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

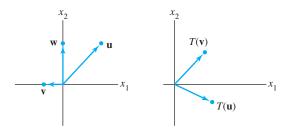
17. Let
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 be a limit of the second sec

17. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 5\\2 \end{bmatrix}$ into $\begin{bmatrix} 2\\1 \end{bmatrix}$ and maps $\mathbf{v} = \begin{bmatrix} 1\\3 \end{bmatrix}$ into $\begin{bmatrix} -1\\3 \end{bmatrix}$. Use the fact that *T* is linear to find the images under *T* of $3\mathbf{u}, 2\mathbf{v}$, and $3\mathbf{u} + 2\mathbf{v}$.

T

70 CHAPTER 1 Linear Equations in Linear Algebra

18. The figure shows vectors u, v, and w, along with the images T(u) and T(v) under the action of a linear transformation T : R² → R². Copy this figure carefully, and draw the image T(w) as accurately as possible. [*Hint:* First, write w as a linear combination of u and v.]



- **19.** Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- **20.** Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{x} into $x_1\mathbf{v}_1 + x_2\mathbf{v}_2$. Find a matrix A such that $T(\mathbf{x})$ is $A\mathbf{x}$ for each \mathbf{x} .

In Exercises 21 and 22, mark each statement True or False. Justify each answer.

- **21.** a. A linear transformation is a special type of function.
 - b. If A is a 3×5 matrix and T is a transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, then the domain of T is \mathbb{R}^3 .
 - c. If A is an $m \times n$ matrix, then the range of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is \mathbb{R}^m .
 - d. Every linear transformation is a matrix transformation.
 - e. A transformation T is linear if and only if $T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$ for all \mathbf{v}_1 and \mathbf{v}_2 in the domain of T and for all scalars c_1 and c_2 .
- 22. a. Every matrix transformation is a linear transformation.
 - b. The codomain of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is the set of all linear combinations of the columns of A.
 - c. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and if **c** is in \mathbb{R}^m , then a uniqueness question is "Is **c** in the range of T?"
 - d. A linear transformation preserves the operations of vector addition and scalar multiplication.
 - e. The superposition principle is a physical description of a linear transformation.
- **23.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects each point through the x_1 -axis. (See Practice Problem 2.)

Make two sketches similar to Figure 6 that illustrate properties (i) and (ii) of a linear transformation.

- **24.** Suppose vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span \mathbb{R}^n , and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Suppose $T(\mathbf{v}_i) = \mathbf{0}$ for $i = 1, \ldots, p$. Show that T is the zero transformation. That is, show that if \mathbf{x} is any vector in \mathbb{R}^n , then $T(\mathbf{x}) = \mathbf{0}$.
- **25.** Given $\mathbf{v} \neq \mathbf{0}$ and \mathbf{p} in \mathbb{R}^n , the line through \mathbf{p} in the direction of \mathbf{v} has the parametric equation $\mathbf{x} = \mathbf{p} + t\mathbf{v}$. Show that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ maps this line onto another line or onto a single point (a *degenerate line*).
- **26.** Let **u** and **v** be linearly independent vectors in \mathbb{R}^3 , and let *P* be the plane through **u**, **v**, and **0**. The parametric equation of *P* is $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$ (with *s*, *t* in \mathbb{R}). Show that a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ maps *P* onto a plane through **0**, or onto a line through **0**, or onto just the origin in \mathbb{R}^3 . What must be true about $T(\mathbf{u})$ and $T(\mathbf{v})$ in order for the image of the plane *P* to be a plane?
- **27.** a. Show that the line through vectors \mathbf{p} and \mathbf{q} in \mathbb{R}^n may be written in the parametric form $\mathbf{x} = (1 t)\mathbf{p} + t\mathbf{q}$. (Refer to the figure with Exercises 21 and 22 in Section 1.5.)
 - b. The line segment from \mathbf{p} to \mathbf{q} is the set of points of the form $(1 t)\mathbf{p} + t\mathbf{q}$ for $0 \le t \le 1$ (as shown in the figure below). Show that a linear transformation *T* maps this line segment onto a line segment or onto a single point.

$$(t=1) \mathbf{q} (1-t)\mathbf{p} + t\mathbf{q}$$
$$(t=0) \mathbf{p}$$

- **28.** Let **u** and **v** be vectors in \mathbb{R}^n . It can be shown that the set *P* of all points in the parallelogram determined by **u** and **v** has the form $a\mathbf{u} + b\mathbf{v}$, for $0 \le a \le 1, 0 \le b \le 1$. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Explain why the image of a point in *P* under the transformation *T* lies in the parallelogram determined by $T(\mathbf{u})$ and $T(\mathbf{v})$.
- **29.** Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = mx + b.
 - a. Show that f is a linear transformation when b = 0.
 - b. Find a property of a linear transformation that is violated when $b \neq 0$.
 - c. Why is f called a linear function?
- **30.** An *affine transformation* $T : \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(x) = A\mathbf{x} + \mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^m . Show that T is *not* a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in computer graphics.)
- **31.** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.
- In Exercises 32–36, column vectors are written as rows, such as $\mathbf{x} = (x_1, x_2)$, and $T(\mathbf{x})$ is written as $T(x_1, x_2)$.
- **32.** Show that the transformation T defined by $T(x_1, x_2) = (4x_1 2x_2, 3|x_2|)$ is not linear.

1.9 The Matrix of a Linear Transformation 71

- **33.** Show that the transformation T defined by $T(x_1, x_2) = (2x_1 3x_2, x_1 + 4, 5x_2)$ is not linear.
- **34.** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that if T maps two linearly independent vectors onto a linearly dependent set, then the equation $T(\mathbf{x}) = \mathbf{0}$ has a nontrivial solution. [*Hint:* Suppose \mathbf{u} and \mathbf{v} in \mathbb{R}^n are linearly independent and yet $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly dependent. Then $c_1T(\mathbf{u}) + c_2T(\mathbf{v}) = \mathbf{0}$ for some weights c_1 and c_2 , not both zero. Use this equation.]
- **35.** Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation that reflects each vector $\mathbf{x} = (x_1, x_2, x_3)$ through the plane $x_3 = 0$ onto $T(\mathbf{x}) = (x_1, x_2, -x_3)$. Show that *T* is a linear transformation. [See Example 4 for ideas.]
- **36.** Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation that projects each vector $\mathbf{x} = (x_1, x_2, x_3)$ onto the plane $x_2 = 0$, so $T(\mathbf{x}) = (x_1, 0, x_3)$. Show that *T* is a linear transformation.

[M] In Exercises 37 and 38, the given matrix determines a linear transformation T. Find all x such that $T(\mathbf{x}) = \mathbf{0}$.

37.
$$\begin{bmatrix} 4 & -2 & 5 & -5 \\ -9 & 7 & -8 & 0 \\ -6 & 4 & 5 & 3 \\ 5 & -3 & 8 & -4 \end{bmatrix}$$
38.
$$\begin{bmatrix} -9 & -4 & -9 & 4 \\ 5 & -8 & -7 & 6 \\ 7 & 11 & 16 & -9 \\ 9 & -7 & -4 & 5 \end{bmatrix}$$

39. [M] Let
$$\mathbf{b} = \begin{bmatrix} 5\\9\\7 \end{bmatrix}$$
 and let A be the matrix in Exercise 37. Is

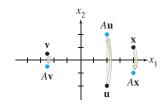
b in the range of the transformation $\mathbf{x} \mapsto A\mathbf{x}$? If so, find an \mathbf{x} whose image under the transformation is **b**.

40. [**M**] Let
$$\mathbf{b} = \begin{vmatrix} -7 \\ -7 \\ 13 \\ -5 \end{vmatrix}$$
 and let *A* be the matrix in Exercise 38.

Is **b** in the range of the transformation $\mathbf{x} \mapsto A\mathbf{x}$? If so, find an \mathbf{x} whose image under the transformation is **b**.

SG Mastering: Linear Transformations 1–34

SOLUTIONS TO PRACTICE PROBLEMS

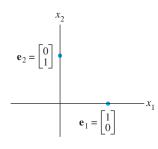


The transformation $\mathbf{x} \mapsto A\mathbf{x}$.

- 1. A must have five columns for $A\mathbf{x}$ to be defined. A must have two rows for the codomain of T to be \mathbb{R}^2 .
- 2. Plot some random points (vectors) on graph paper to see what happens. A point such as (4, 1) maps into (4, -1). The transformation $\mathbf{x} \mapsto A\mathbf{x}$ reflects points through the *x*-axis (or x_1 -axis).
- 3. Let $\mathbf{x} = t\mathbf{u}$ for some t such that $0 \le t \le 1$. Since T is linear, $T(t\mathbf{u}) = t T(\mathbf{u})$, which is a point on the line segment between **0** and $T(\mathbf{u})$.

1.9 THE MATRIX OF A LINEAR TRANSFORMATION

Whenever a linear transformation T arises geometrically or is described in words, we usually want a "formula" for $T(\mathbf{x})$. The discussion that follows shows that every linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ and that important properties of T are intimately related to familiar properties of A. The key to finding A is to observe that T is completely determined by what it does to the columns of the $n \times n$ identity matrix I_n .



EXAMPLE 1 The columns of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose *T* is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 such that

$$T(\mathbf{e}_1) = \begin{bmatrix} 5\\ -7\\ 2 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} -3\\ 8\\ 0 \end{bmatrix}$

With no additional information, find a formula for the image of an arbitrary **x** in \mathbb{R}^2 .

I.