2. If \mathbf{x} and \mathbf{y} are production vectors, then the total cost vector associated with the combined production $\mathbf{x}+\mathbf{y}$ is precisely the sum of the cost vectors $T(\mathbf{x})$ and $T(\mathbf{y})$.

PRACTICE PROBLEMS

1. Suppose $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ and $T(\mathbf{x})=A \mathbf{x}$ for some matrix A and for each \mathbf{x} in \mathbb{R}^{5}. How many rows and columns does A have?
2. Let $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. Give a geometric description of the transformation $\mathbf{x} \mapsto A \mathbf{x}$.
3. The line segment from $\mathbf{0}$ to a vector \mathbf{u} is the set of points of the form $t \mathbf{u}$, where $0 \leq t \leq 1$. Show that a linear transformation T maps this segment into the segment between $\mathbf{0}$ and $T(\mathbf{u})$.

1.8 EXERCISES

1. Let $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, and define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$. Find the images under T of $\mathbf{u}=\left[\begin{array}{r}1 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$.
2. Let $A=\left[\begin{array}{rcc}.5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5\end{array}\right], \mathbf{u}=\left[\begin{array}{r}1 \\ 0 \\ -4\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.

Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.
In Exercises 3-6, with T defined by $T(\mathbf{x})=A \mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b}, and determine whether \mathbf{x} is unique.
3. $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-1 \\ 7 \\ -3\end{array}\right]$
4. $A=\left[\begin{array}{rrr}1 & -3 & 2 \\ 0 & 1 & -4 \\ 3 & -5 & -9\end{array}\right], \mathbf{b}=\left[\begin{array}{r}6 \\ -7 \\ -9\end{array}\right]$
5. $A=\left[\begin{array}{rrr}1 & -5 & -7 \\ -3 & 7 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$
6. $A=\left[\begin{array}{rrr}1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4\end{array}\right], \mathbf{b}=\left[\begin{array}{r}1 \\ 9 \\ 3 \\ -6\end{array}\right]$
7. Let A be a 6×5 matrix. What must a and b be in order to define $T: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b}$ by $T(\mathbf{x})=A \mathbf{x}$?
8. How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^{4} into \mathbb{R}^{5} by the rule $T(\mathbf{x})=A \mathbf{x}$?

For Exercises 9 and 10 , find all \mathbf{x} in \mathbb{R}^{4} that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A \mathbf{x}$ for the given matrix A.
9. $A=\left[\begin{array}{rrrr}1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4\end{array}\right]$
10. $A=\left[\begin{array}{rrrr}1 & 3 & 9 & 2 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -2 & 3 & 0 & 5\end{array}\right]$
11. Let $\mathbf{b}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$, and let A be the matrix in Exercise 9. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$? Why or why not?
12. Let $\mathbf{b}=\left[\begin{array}{r}-1 \\ 3 \\ -1 \\ 4\end{array}\right]$, and let A be the matrix in Exercise 10. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$? Why or why not?

In Exercises 13-16, use a rectangular coordinate system to plot $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$, and their images under the given transformation T. (Make a separate and reasonably large sketch for each exercise.) Describe geometrically what T does to each vector \mathbf{x} in \mathbb{R}^{2}.
13. $T(\mathbf{x})=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
14. $T(\mathbf{x})=\left[\begin{array}{rr}.5 & 0 \\ 0 & .5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
15. $T(\mathbf{x})=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
16. $T(\mathbf{x})=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
17. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ into $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and maps $\mathbf{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ into $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$. Use the fact that T is linear to find the images under T of $3 \mathbf{u}, 2 \mathbf{v}$, and $3 \mathbf{u}+2 \mathbf{v}$.
18. The figure shows vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}, along with the images $T(\mathbf{u})$ and $T(\mathbf{v})$ under the action of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Copy this figure carefully, and draw the image $T(\mathbf{w})$ as accurately as possible. [Hint: First, write \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v}.]

19. Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, and $\mathbf{y}_{2}=\left[\begin{array}{r}-1 \\ 6\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{e}_{1} into \mathbf{y}_{1} and maps \mathbf{e}_{2} into \mathbf{y}_{2}. Find the images of $\left[\begin{array}{r}5 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
20. Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$, and $\mathbf{v}_{2}=\left[\begin{array}{r}7 \\ -3\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{x} into $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}$. Find a matrix A such that $T(\mathbf{x})$ is $A \mathbf{x}$ for each \mathbf{x}.

In Exercises 21 and 22, mark each statement True or False. Justify each answer.
21. a. A linear transformation is a special type of function.
b. If A is a 3×5 matrix and T is a transformation defined by $T(\mathbf{x})=A \mathbf{x}$, then the domain of T is \mathbb{R}^{3}.
c. If A is an $m \times n$ matrix, then the range of the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is \mathbb{R}^{m}.
d. Every linear transformation is a matrix transformation.
e. A transformation T is linear if and only if $T\left(c_{1} \mathbf{v}_{1}+\right.$ $\left.c_{2} \mathbf{v}_{2}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)$ for all \mathbf{v}_{1} and \mathbf{v}_{2} in the domain of T and for all scalars c_{1} and c_{2}.
22. a. Every matrix transformation is a linear transformation.
b. The codomain of the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is the set of all linear combinations of the columns of A.
c. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and if \mathbf{c} is in \mathbb{R}^{m}, then a uniqueness question is "Is \mathbf{c} in the range of T ?"
d. A linear transformation preserves the operations of vector addition and scalar multiplication.
e. The superposition principle is a physical description of a linear transformation.
23. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that reflects each point through the x_{1}-axis. (See Practice Problem 2.)

Make two sketches similar to Figure 6 that illustrate properties (i) and (ii) of a linear transformation.
24. Suppose vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span \mathbb{R}^{n}, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Suppose $T\left(\mathbf{v}_{i}\right)=\mathbf{0}$ for $i=1, \ldots, p$. Show that T is the zero transformation. That is, show that if \mathbf{x} is any vector in \mathbb{R}^{n}, then $T(\mathbf{x})=\mathbf{0}$.
25. Given $\mathbf{v} \neq \mathbf{0}$ and \mathbf{p} in \mathbb{R}^{n}, the line through \mathbf{p} in the direction of \mathbf{v} has the parametric equation $\mathbf{x}=\mathbf{p}+t \mathbf{v}$. Show that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ maps this line onto another line or onto a single point (a degenerate line).
26. Let \mathbf{u} and \mathbf{v} be linearly independent vectors in \mathbb{R}^{3}, and let P be the plane through \mathbf{u}, \mathbf{v}, and $\mathbf{0}$. The parametric equation of P is $\mathbf{x}=s \mathbf{u}+t \mathbf{v}$ (with s, t in \mathbb{R}). Show that a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ maps P onto a plane through $\mathbf{0}$, or onto a line through $\mathbf{0}$, or onto just the origin in \mathbb{R}^{3}. What must be true about $T(\mathbf{u})$ and $T(\mathbf{v})$ in order for the image of the plane P to be a plane?
27. a. Show that the line through vectors \mathbf{p} and \mathbf{q} in \mathbb{R}^{n} may be written in the parametric form $\mathbf{x}=(1-t) \mathbf{p}+t \mathbf{q}$. (Refer to the figure with Exercises 21 and 22 in Section 1.5.)
b. The line segment from \mathbf{p} to \mathbf{q} is the set of points of the form $(1-t) \mathbf{p}+t \mathbf{q}$ for $0 \leq t \leq 1$ (as shown in the figure below). Show that a linear transformation T maps this line segment onto a line segment or onto a single point.

28. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. It can be shown that the set P of all points in the parallelogram determined by \mathbf{u} and \mathbf{v} has the form $a \mathbf{u}+b \mathbf{v}$, for $0 \leq a \leq 1,0 \leq b \leq 1$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Explain why the image of a point in P under the transformation T lies in the parallelogram determined by $T(\mathbf{u})$ and $T(\mathbf{v})$.
29. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=m x+b$.
a. Show that f is a linear transformation when $b=0$.
b. Find a property of a linear transformation that is violated when $b \neq 0$.
c. Why is f called a linear function?
30. An affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $T(x)=A \mathbf{x}+\mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^{m}. Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in computer graphics.)
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a linearly dependent set in \mathbb{R}^{n}. Explain why the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.

In Exercises 32-36, column vectors are written as rows, such as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, and $T(\mathbf{x})$ is written as $T\left(x_{1}, x_{2}\right)$.
32. Show that the transformation T defined by $T\left(x_{1}, x_{2}\right)=$ $\left(4 x_{1}-2 x_{2}, 3\left|x_{2}\right|\right)$ is not linear.
33. Show that the transformation T defined by $T\left(x_{1}, x_{2}\right)=$ $\left(2 x_{1}-3 x_{2}, x_{1}+4,5 x_{2}\right)$ is not linear.
34. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Show that if T maps two linearly independent vectors onto a linearly dependent set, then the equation $T(\mathbf{x})=\mathbf{0}$ has a nontrivial solution. [Hint: Suppose \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are linearly independent and yet $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly dependent. Then $c_{1} T(\mathbf{u})+c_{2} T(\mathbf{v})=\mathbf{0}$ for some weights c_{1} and c_{2}, not both zero. Use this equation.]
35. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the transformation that reflects each vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ through the plane $x_{3}=0$ onto $T(\mathbf{x})=\left(x_{1}, x_{2},-x_{3}\right)$. Show that T is a linear transformation. [See Example 4 for ideas.]
36. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the transformation that projects each vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ onto the plane $x_{2}=0$, so $T(\mathbf{x})=$ $\left(x_{1}, 0, x_{3}\right)$. Show that T is a linear transformation.
[M] In Exercises 37 and 38, the given matrix determines a linear transformation T. Find all \mathbf{x} such that $T(\mathbf{x})=\mathbf{0}$.
37. $\left[\begin{array}{rrrr}4 & -2 & 5 & -5 \\ -9 & 7 & -8 & 0 \\ -6 & 4 & 5 & 3 \\ 5 & -3 & 8 & -4\end{array}\right]$
38. $\left[\begin{array}{rrrr}-9 & -4 & -9 & 4 \\ 5 & -8 & -7 & 6 \\ 7 & 11 & 16 & -9 \\ 9 & -7 & -4 & 5\end{array}\right]$
39. $[\mathbf{M}]$ Let $\mathbf{b}=\left[\begin{array}{l}7 \\ 5 \\ 9 \\ 7\end{array}\right]$ and let A be the matrix in Exercise 37. Is \mathbf{b} in the range of the transformation $\mathbf{x} \mapsto A \mathbf{x}$? If so, find an \mathbf{x} whose image under the transformation is \mathbf{b}.
40. $[\mathbf{M}]$ Let $\mathbf{b}=\left[\begin{array}{r}-7 \\ -7 \\ 13 \\ -5\end{array}\right]$ and let A be the matrix in Exercise 38 . Is \mathbf{b} in the range of the transformation $\mathbf{x} \mapsto A \mathbf{x}$? If so, find an \mathbf{x} whose image under the transformation is \mathbf{b}.

SG Mastering: Linear Transformations 1-34

SOLUTIONS TO PRACTICE PROBLEMS

The transformation $\mathbf{x} \mapsto A \mathbf{x}$.

1. A must have five columns for $A \mathbf{x}$ to be defined. A must have two rows for the codomain of T to be \mathbb{R}^{2}.
2. Plot some random points (vectors) on graph paper to see what happens. A point such as $(4,1)$ maps into $(4,-1)$. The transformation $\mathbf{x} \mapsto A \mathbf{x}$ reflects points through the x-axis (or x_{1}-axis).
3. Let $\mathbf{x}=t \mathbf{u}$ for some t such that $0 \leq t \leq 1$. Since T is linear, $T(t \mathbf{u})=t T(\mathbf{u})$, which is a point on the line segment between $\mathbf{0}$ and $T(\mathbf{u})$.

1.9 THE MATRIX OF A LINEAR TRANSFORMATION

Whenever a linear transformation T arises geometrically or is described in words, we usually want a "formula" for $T(\mathbf{x})$. The discussion that follows shows that every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is actually a matrix transformation $\mathbf{x} \mapsto A \mathbf{x}$ and that important properties of T are intimately related to familiar properties of A. The key to finding A is to observe that T is completely determined by what it does to the columns of the $n \times n$ identity matrix I_{n}.
EXAMPLE 1 The columns of $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Suppose T is a linear transformation from \mathbb{R}^{2} into \mathbb{R}^{3} such that

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{r}
5 \\
-7 \\
2
\end{array}\right] \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{r}
-3 \\
8 \\
0
\end{array}\right]
$$

With no additional information, find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^{2}.

