1.5 EXERCISES

In Exercises 1-4, determine if the system has a nontrivial solution. Try to use as few row operations as possible.

1. $2 x_{1}-5 x_{2}+8 x_{3}=0$
$-2 x_{1}-7 x_{2}+x_{3}=0$

$$
4 x_{1}+2 x_{2}+7 x_{3}=0
$$

2. $x_{1}-3 x_{2}+7 x_{3}=0$ $-2 x_{1}+x_{2}-4 x_{3}=0$ $x_{1}+2 x_{2}+9 x_{3}=0$
3. $-3 x_{1}+5 x_{2}-7 x_{3}=0$

$$
-6 x_{1}+7 x_{2}+x_{3}=0
$$

4. $-5 x_{1}+7 x_{2}+9 x_{3}=0$
$x_{1}-2 x_{2}+6 x_{3}=0$

In Exercises 5 and 6, follow the method of Examples 1 and 2 to write the solution set of the given homogeneous system in parametric vector form.
5. $x_{1}+3 x_{2}+x_{3}=0$
$-4 x_{1}-9 x_{2}+2 x_{3}=0$
$-3 x_{2}-6 x_{3}=0$
6. $x_{1}+3 x_{2}-5 x_{3}=0$
$x_{1}+4 x_{2}-8 x_{3}=0$
$-3 x_{1}-7 x_{2}+9 x_{3}=0$

In Exercises 7-12, describe all solutions of $A \mathbf{x}=\mathbf{0}$ in parametric vector form, where A is row equivalent to the given matrix.
7. $\left[\begin{array}{llll}1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5\end{array}\right]$
8. $\left[\begin{array}{rrrr}1 & -2 & -9 & 5 \\ 0 & 1 & 2 & -6\end{array}\right]$
9. $\left[\begin{array}{rrr}3 & -9 & 6 \\ -1 & 3 & -2\end{array}\right]$
10. $\left[\begin{array}{llll}1 & 3 & 0 & -4 \\ 2 & 6 & 0 & -8\end{array}\right]$
11. $\left[\begin{array}{rrrrrr}1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
12. $\left[\begin{array}{rrrrrr}1 & 5 & 2 & -6 & 9 & 0 \\ 0 & 0 & 1 & -7 & 4 & -8 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
13. Suppose the solution set of a certain system of linear equations can be described as $x_{1}=5+4 x_{3}, x_{2}=-2-7 x_{3}$, with x_{3} free. Use vectors to describe this set as a line in \mathbb{R}^{3}.
14. Suppose the solution set of a certain system of linear equations can be described as $x_{1}=3 x_{4}, x_{2}=8+x_{4}$, $x_{3}=2-5 x_{4}$, with x_{4} free. Use vectors to describe this set as a "line" in \mathbb{R}^{4}.
15. Follow the method of Example 3 to describe the solutions of the following system in parametric vector form. Also, give a geometric description of the solution set and compare it to that in Exercise 5.

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3}= & 1 \\
-4 x_{1}-9 x_{2}+2 x_{3}= & -1 \\
-3 x_{2}-6 x_{3} & =-3
\end{aligned}
$$

16. As in Exercise 15, describe the solutions of the following system in parametric vector form, and provide a geometric comparison with the solution set in Exercise 6.

$$
\begin{aligned}
x_{1}+3 x_{2}-5 x_{3}= & 4 \\
x_{1}+4 x_{2}-8 x_{3}= & 7 \\
-3 x_{1}-7 x_{2}+9 x_{3}= & -6
\end{aligned}
$$

17. Describe and compare the solution sets of $x_{1}+9 x_{2}-4 x_{3}=0$ and $x_{1}+9 x_{2}-4 x_{3}=-2$.
18. Describe and compare the solution sets of $x_{1}-3 x_{2}+5 x_{3}=0$ and $x_{1}-3 x_{2}+5 x_{3}=4$.
In Exercises 19 and 20, find the parametric equation of the line through a parallel to \mathbf{b}.
19. $\mathbf{a}=\left[\begin{array}{r}-2 \\ 0\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-5 \\ 3\end{array}\right] \quad$ 20. $\mathbf{a}=\left[\begin{array}{r}3 \\ -4\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-7 \\ 8\end{array}\right]$

In Exercises 21 and 22, find a parametric equation of the line M through \mathbf{p} and \mathbf{q}. [Hint: M is parallel to the vector $\mathbf{q}-\mathbf{p}$. See the figure below.]
21. $\mathbf{p}=\left[\begin{array}{r}2 \\ -5\end{array}\right], \mathbf{q}=\left[\begin{array}{r}-3 \\ 1\end{array}\right] \quad$ 22. $\mathbf{p}=\left[\begin{array}{r}-6 \\ 3\end{array}\right], \mathbf{q}=\left[\begin{array}{r}0 \\ -4\end{array}\right]$

The line through \mathbf{p} and \mathbf{q}.
In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. A homogeneous equation is always consistent.
b. The equation $A \mathbf{x}=\mathbf{0}$ gives an explicit description of its solution set.
c. The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has the trivial solution if and only if the equation has at least one free variable.
d. The equation $\mathbf{x}=\mathbf{p}+t \mathbf{v}$ describes a line through \mathbf{v} parallel to \mathbf{p}.
e. The solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$, where \mathbf{v}_{h} is any solution of the equation $A \mathbf{x}=\mathbf{0}$.
24. a. If \mathbf{x} is a nontrivial solution of $A \mathbf{x}=\mathbf{0}$, then every entry in \mathbf{x} is nonzero.
b. The equation $\mathbf{x}=x_{2} \mathbf{u}+x_{3} \mathbf{v}$, with x_{2} and x_{3} free (and neither \mathbf{u} nor \mathbf{v} a multiple of the other), describes a plane through the origin.
c. The equation $A \mathbf{x}=\mathbf{b}$ is homogeneous if the zero vector is a solution.
d. The effect of adding \mathbf{p} to a vector is to move the vector in a direction parallel to \mathbf{p}.
e. The solution set of $A \mathbf{x}=\mathbf{b}$ is obtained by translating the solution set of $A \mathbf{x}=\mathbf{0}$.
25. Prove the second part of Theorem 6: Let \mathbf{w} be any solution of $A \mathbf{x}=\mathbf{b}$, and define $\mathbf{v}_{h}=\mathbf{w}-\mathbf{p}$. Show that \mathbf{v}_{h} is a solution of $A \mathbf{x}=\mathbf{0}$. This shows that every solution of $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$, with \mathbf{p} a particular solution of $A \mathbf{x}=\mathbf{b}$ and \mathbf{v}_{h} a solution of $A \mathbf{x}=\mathbf{0}$.
26. Suppose $A \mathbf{x}=\mathbf{b}$ has a solution. Explain why the solution is unique precisely when $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
27. Suppose A is the 3×3 zero matrix (with all zero entries). Describe the solution set of the equation $A \mathbf{x}=\mathbf{0}$.
28. If $\mathbf{b} \neq \mathbf{0}$, can the solution set of $A \mathbf{x}=\mathbf{b}$ be a plane through the origin? Explain.

In Exercises 29-32, (a) does the equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution and (b) does the equation $A \mathbf{x}=\mathbf{b}$ have at least one solution for every possible \mathbf{b} ?
29. A is a 3×3 matrix with three pivot positions.
30. A is a 3×3 matrix with two pivot positions.
31. A is a 3×2 matrix with two pivot positions.
32. A is a 2×4 matrix with two pivot positions.
33. Given $A=\left[\begin{array}{rr}-2 & -6 \\ 7 & 21 \\ -3 & -9\end{array}\right]$, find one nontrivial solution of $A \mathbf{x}=\mathbf{0}$ by inspection. [Hint: Think of the equation $A \mathbf{x}=\mathbf{0}$ written as a vector equation.]
34. Given $A=\left[\begin{array}{rr}4 & -6 \\ -8 & 12 \\ 6 & -9\end{array}\right]$, find one nontrivial solution of $A \mathbf{x}=\mathbf{0}$ by inspection.
35. Construct a 3×3 nonzero matrix A such that the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is a solution of $A \mathbf{x}=\mathbf{0}$.
36. Construct a 3×3 nonzero matrix A such that the vector $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$ is a solution of $A \mathbf{x}=\mathbf{0}$.
37. Construct a 2×2 matrix A such that the solution set of the equation $A \mathbf{x}=\mathbf{0}$ is the line in \mathbb{R}^{2} through $(4,1)$ and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^{2} such that the solution set of $A \mathbf{x}=\mathbf{b}$ is not a line in \mathbb{R}^{2} parallel to the solution set of $A \mathbf{x}=\mathbf{0}$. Why does this not contradict Theorem 6?
38. Suppose A is a 3×3 matrix and \mathbf{y} is a vector in \mathbb{R}^{3} such that the equation $A \mathbf{x}=\mathbf{y}$ does not have a solution. Does there exist a vector \mathbf{z} in \mathbb{R}^{3} such that the equation $A \mathbf{x}=\mathbf{z}$ has a unique solution? Discuss.
39. Let A be an $m \times n$ matrix and let \mathbf{u} be a vector in \mathbb{R}^{n} that satisfies the equation $A \mathbf{x}=\mathbf{0}$. Show that for any scalar c, the vector $c \mathbf{u}$ also satisfies $A \mathbf{x}=\mathbf{0}$. [That is, show that $A(c \mathbf{u})=\mathbf{0}$.]
40. Let A be an $m \times n$ matrix, and let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n} with the property that $A \mathbf{u}=\mathbf{0}$ and $A \mathbf{v}=\mathbf{0}$. Explain why $A(\mathbf{u}+\mathbf{v})$ must be the zero vector. Then explain why $A(c \mathbf{u}+d \mathbf{v})=\mathbf{0}$ for each pair of scalars c and d.

SOLUTIONS TO PRACTICE PROBLEMS

1. Row reduce the augmented matrix:

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
1 & 4 & -5 & 0 \\
2 & -1 & 8 & 9
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 4 & -5 & 0 \\
0 & -9 & 18 & 9
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 3 & 4 \\
0 & 1 & -2 & -1
\end{array}\right]} \\
x_{1}+3 x_{3}=4 \\
x_{2}-2 x_{3}=-1
\end{gathered}
$$

Thus $x_{1}=4-3 x_{3}, x_{2}=-1+2 x_{3}$, with x_{3} free. The general solution in parametric vector form is

The intersection of the two planes is the line through \mathbf{p} in the direction of \mathbf{v}.

