NUMERICAL NOTE

To optimize a computer algorithm to compute $A \mathbf{x}$, the sequence of calculations should involve data stored in contiguous memory locations. The most widely used professional algorithms for matrix computations are written in Fortran, a language that stores a matrix as a set of columns. Such algorithms compute $A \mathbf{x}$ as a linear combination of the columns of A. In contrast, if a program is written in the popular language C, which stores matrices by rows, $A \mathbf{x}$ should be computed via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and (c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a) and (d) are either both true or both false. This will tie all four statements together.

Let U be an echelon form of A. Given \mathbf{b} in \mathbb{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & \mathbf{d}\end{array}\right]$ for some \mathbf{d} in \mathbb{R}^{m} :

$$
\left[\begin{array}{ll}
A & \mathbf{b}
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ll}
U & \mathbf{d}
\end{array}\right]
$$

If statement (d) is true, then each row of U contains a pivot position and there can be no pivot in the augmented column. So $A \mathbf{x}=\mathbf{b}$ has a solution for any \mathbf{b}, and (a) is true. If (d) is false, the last row of U is all zeros. Let \mathbf{d} be any vector with a 1 in its last entry. Then $\left[\begin{array}{ll}U & \mathbf{d}\end{array}\right]$ represents an inconsistent system. Since row operations are reversible, $\left[\begin{array}{ll}U & \mathbf{d}\end{array}\right]$ can be transformed into the form $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$. The new system $A \mathbf{x}=\mathbf{b}$ is also inconsistent, and (a) is false.

PRACTICE PROBLEMS

1. Let $A=\left[\begin{array}{rrrr}1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7\end{array}\right], \mathbf{p}=\left[\begin{array}{r}3 \\ -2 \\ 0 \\ -4\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{r}-7 \\ 9 \\ 0\end{array}\right]$. It can be shown that \mathbf{p} is a solution of $A \mathbf{x}=\mathbf{b}$. Use this fact to exhibit \mathbf{b} as a specific linear combination of the columns of A.
2. Let $A=\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right], \mathbf{u}=\left[\begin{array}{r}4 \\ -1\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{r}-3 \\ 5\end{array}\right]$. Verify Theorem $5(a)$ in this case by computing $A(\mathbf{u}+\mathbf{v})$ and $A \mathbf{u}+A \mathbf{v}$.
3. Construct a 3×3 matrix A and vectors \mathbf{b} and \mathbf{c} in \mathbb{R}^{3} so that $A \mathbf{x}=\mathbf{b}$ has a solution, but $A \mathbf{x}=\mathbf{c}$ does not.

1.4 EXERCISES

Compute the products in Exercises 1-4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing $A \mathbf{x}$. If a product is undefined, explain why.

1. $\left[\begin{array}{rr}-4 & 2 \\ 1 & 6 \\ 0 & 1\end{array}\right]\left[\begin{array}{r}3 \\ -2 \\ 7\end{array}\right]$
2. $\left[\begin{array}{r}2 \\ 6 \\ -1\end{array}\right]\left[\begin{array}{r}5 \\ -1\end{array}\right]$
3. $\left[\begin{array}{rr}6 & 5 \\ -4 & -3 \\ 7 & 6\end{array}\right]\left[\begin{array}{r}2 \\ -3\end{array}\right]$
4. $\left[\begin{array}{rrr}8 & 3 & -4 \\ 5 & 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

In Exercises 5-8, use the definition of $A \mathbf{x}$ to write the matrix equation as a vector equation, or vice versa.
5. $\left[\begin{array}{rrrr}5 & 1 & -8 & 4 \\ -2 & -7 & 3 & -5\end{array}\right]\left[\begin{array}{r}5 \\ -1 \\ 3 \\ -2\end{array}\right]=\left[\begin{array}{r}-8 \\ 16\end{array}\right]$
6. $\left[\begin{array}{rr}7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}-2 \\ -5\end{array}\right]=\left[\begin{array}{r}1 \\ -9 \\ 12 \\ -4\end{array}\right]$
7. $x_{1}\left[\begin{array}{r}4 \\ -1 \\ 7 \\ -4\end{array}\right]+x_{2}\left[\begin{array}{r}-5 \\ 3 \\ -5 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{r}7 \\ -8 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{r}6 \\ -8 \\ 0 \\ -7\end{array}\right]$
8. $z_{1}\left[\begin{array}{r}4 \\ -2\end{array}\right]+z_{2}\left[\begin{array}{r}-4 \\ 5\end{array}\right]+z_{3}\left[\begin{array}{r}-5 \\ 4\end{array}\right]+z_{4}\left[\begin{array}{l}3 \\ 0\end{array}\right]=\left[\begin{array}{r}4 \\ 13\end{array}\right]$

In Exercises 9 and 10, write the system first as a vector equation and then as a matrix equation.

$$
\text { 9. } 3 x_{1}+x_{2}-5 x_{3}=9
$$

$x_{2}+4 x_{3}=0$

$$
\text { 10. } \begin{aligned}
8 x_{1}-x_{2} & =4 \\
5 x_{1}+4 x_{2} & =1 \\
x_{1}-3 x_{2} & =2
\end{aligned}
$$

Given A and \mathbf{b} in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$. Then solve the system and write the solution as a vector.
11. $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -3\end{array}\right], \mathbf{b}=\left[\begin{array}{r}2 \\ 2 \\ 9\end{array}\right]$
12. $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right], \mathbf{b}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$
13. Let $\mathbf{u}=\left[\begin{array}{l}0 \\ 4 \\ 4\end{array}\right]$ and $A=\left[\begin{array}{rr}3 & -5 \\ -2 & 6 \\ 1 & 1\end{array}\right]$. Is \mathbf{u} in the plane \mathbb{R}^{3} spanned by the columns of A ? (See the figure.) Why or why not?

14. Let $\mathbf{u}=\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]$ and $A=\left[\begin{array}{rrr}5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0\end{array}\right]$. Is \mathbf{u} in the subset of \mathbb{R}^{3} spanned by the columns of A ? Why or why not?
15. Let $A=\left[\begin{array}{rr}2 & -1 \\ -6 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
16. Repeat Exercise 15: $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8\end{array}\right], \mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.

Exercises 17-20 refer to the matrices A and B below. Make appropriate calculations that justify your answers and mention an appropriate theorem.
$A=\left[\begin{array}{rrrr}1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1\end{array}\right]$
$B=\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1\end{array}\right]$
17. How many rows of A contain a pivot position? Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution for each \mathbf{b} in \mathbb{R}^{4} ?
18. Do the columns of B span \mathbb{R}^{4} ? Does the equation $B \mathbf{x}=\mathbf{y}$ have a solution for each \mathbf{y} in \mathbb{R}^{4} ?
19. Can each vector in \mathbb{R}^{4} be written as a linear combination of the columns of the matrix A above? Do the columns of A span \mathbb{R}^{4} ?
20. Can every vector in \mathbb{R}^{4} be written as a linear combination of the columns of the matrix B above? Do the columns of B span \mathbb{R}^{3} ?
21. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}1 \\ 0 \\ 0 \\ -1\end{array}\right]$.

Does $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span \mathbb{R}^{4} ? Why or why not?
22. Let $\mathbf{v}_{1}=\left[\begin{array}{r}0 \\ 0 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -3 \\ 8\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}4 \\ -1 \\ -5\end{array}\right]$.

Does $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span \mathbb{R}^{3} ? Why or why not?
In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. The equation $A \mathbf{x}=\mathbf{b}$ is referred to as a vector equation.
b. A vector \mathbf{b} is a linear combination of the columns of a matrix A if and only if the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution.
c. The equation $A \mathbf{x}=\mathbf{b}$ is consistent if the augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ has a pivot position in every row.
d. The first entry in the product $A \mathbf{x}$ is a sum of products.
e. If the columns of an $m \times n$ matrix A span \mathbb{R}^{m}, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^{m}.
f. If A is an $m \times n$ matrix and if the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^{m}, then A cannot have a pivot position in every row.
24. a. Every matrix equation $A \mathbf{x}=\mathbf{b}$ corresponds to a vector equation with the same solution set.
b. Any linear combination of vectors can always be written in the form $A \mathbf{x}$ for a suitable matrix A and vector \mathbf{x}.
c. The solution set of a linear system whose augmented matrix is $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]$ is the same as the solution set of $A \mathbf{x}=\mathbf{b}$, if $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$.
d. If the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent, then \mathbf{b} is not in the set spanned by the columns of A.
e. If the augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ has a pivot position in every row, then the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent.
f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^{m}, then the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^{m}.
25. Note that $\left[\begin{array}{rrr}4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3\end{array}\right]\left[\begin{array}{r}-3 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{r}-7 \\ -3 \\ 10\end{array}\right]$. Use this fact (and no row operations) to find scalars c_{1}, c_{2}, c_{3} such that $\left[\begin{array}{r}-7 \\ -3 \\ 10\end{array}\right]=c_{1}\left[\begin{array}{r}4 \\ 5 \\ -6\end{array}\right]+c_{2}\left[\begin{array}{r}-3 \\ -2 \\ 2\end{array}\right]+c_{3}\left[\begin{array}{r}1 \\ 5 \\ -3\end{array}\right]$.
26. Let $\mathbf{u}=\left[\begin{array}{l}7 \\ 2 \\ 5\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}6 \\ 1 \\ 0\end{array}\right]$. It can be shown that $3 \mathbf{u}-5 \mathbf{v}-\mathbf{w}=\mathbf{0}$. Use this fact (and no row operations) to find x_{1} and x_{2} that satisfy the equation
$\left[\begin{array}{ll}7 & 3 \\ 2 & 1 \\ 5 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}6 \\ 1 \\ 0\end{array}\right]$.
27. Let $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$, and \mathbf{v} represent vectors in \mathbb{R}^{5}, and let x_{1}, x_{2}, and x_{3} denote scalars. Write the following vector equation as a matrix equation. Identify any symbols you choose to use.
$x_{1} \mathbf{q}_{1}+x_{2} \mathbf{q}_{2}+x_{3} \mathbf{q}_{3}=\mathbf{v}$
28. Rewrite the (numerical) matrix equation below in symbolic form as a vector equation, using symbols $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots$ for the vectors and c_{1}, c_{2}, \ldots for scalars. Define what each symbol represents, using the data given in the matrix equation.
$\left[\begin{array}{rrrrr}-3 & 5 & -4 & 9 & 7 \\ 5 & 8 & 1 & -2 & -4\end{array}\right]\left[\begin{array}{r}-3 \\ 2 \\ 4 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{r}8 \\ -1\end{array}\right]$
29. Construct a 3×3 matrix, not in echelon form, whose columns span \mathbb{R}^{3}. Show that the matrix you construct has the desired property.
30. Construct a 3×3 matrix, not in echelon form, whose columns do not span \mathbb{R}^{3}. Show that the matrix you construct has the desired property.
31. Let A be a 3×2 matrix. Explain why the equation $A \mathbf{x}=\mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^{3}. Generalize your
argument to the case of an arbitrary A with more rows than columns.
32. Could a set of three vectors in \mathbb{R}^{4} span all of \mathbb{R}^{4} ? Explain. What about n vectors in \mathbb{R}^{m} when n is less than m ?
33. Suppose A is a 4×3 matrix and \mathbf{b} is a vector in \mathbb{R}^{4} with the property that $A \mathbf{x}=\mathbf{b}$ has a unique solution. What can you say about the reduced echelon form of A ? Justify your answer.
34. Suppose A is a 3×3 matrix and \mathbf{b} is a vector in \mathbb{R}^{3} with the property that $A \mathbf{x}=\mathbf{b}$ has a unique solution. Explain why the columns of A must span \mathbb{R}^{3}.
35. Let A be a 3×4 matrix, let \mathbf{y}_{1} and \mathbf{y}_{2} be vectors in \mathbb{R}^{3}, and let $\mathbf{w}=\mathbf{y}_{1}+\mathbf{y}_{2}$. Suppose $\mathbf{y}_{1}=A \mathbf{x}_{1}$ and $\mathbf{y}_{2}=A \mathbf{x}_{2}$ for some vectors \mathbf{x}_{1} and \mathbf{x}_{2} in \mathbb{R}^{4}. What fact allows you to conclude that the system $A \mathbf{x}=\mathbf{w}$ is consistent? (Note: \mathbf{x}_{1} and \mathbf{x}_{2} denote vectors, not scalar entries in vectors.)
36. Let A be a 5×3 matrix, let \mathbf{y} be a vector in \mathbb{R}^{3}, and let \mathbf{z} be a vector in \mathbb{R}^{5}. Suppose $A \mathbf{y}=\mathbf{z}$. What fact allows you to conclude that the system $A \mathbf{x}=4 \mathbf{z}$ is consistent?
[M] In Exercises 37-40, determine if the columns of the matrix span \mathbb{R}^{4}.
37. $\left[\begin{array}{rrrr}7 & 2 & -5 & 8 \\ -5 & -3 & 4 & -9 \\ 6 & 10 & -2 & 7 \\ -7 & 9 & 2 & 15\end{array}\right]$
38. $\left[\begin{array}{rrrr}5 & -7 & -4 & 9 \\ 6 & -8 & -7 & 5 \\ 4 & -4 & -9 & -9 \\ -9 & 11 & 16 & 7\end{array}\right]$
39. $\left[\begin{array}{rrrrr}12 & -7 & 11 & -9 & 5 \\ -9 & 4 & -8 & 7 & -3 \\ -6 & 11 & -7 & 3 & -9 \\ 4 & -6 & 10 & -5 & 12\end{array}\right]$
40. $\left[\begin{array}{rrrrr}8 & 11 & -6 & -7 & 13 \\ -7 & -8 & 5 & 6 & -9 \\ 11 & 7 & -7 & -9 & -6 \\ -3 & 4 & 1 & 8 & 7\end{array}\right]$
41. [M] Find a column of the matrix in Exercise 39 that can be deleted and yet have the remaining matrix columns still span \mathbb{R}^{4}.
42. [M] Find a column of the matrix in Exercise 40 that can be deleted and yet have the remaining matrix columns still span \mathbb{R}^{4}. Can you delete more than one column?

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

$$
\left[\begin{array}{rrrr}
1 & 5 & -2 & 0 \\
-3 & 1 & 9 & -5 \\
4 & -8 & -1 & 7
\end{array}\right]\left[\begin{array}{r}
3 \\
-2 \\
0 \\
-4
\end{array}\right]=\left[\begin{array}{r}
-7 \\
9 \\
0
\end{array}\right]
$$

