I

40 CHAPTER 1 Linear Equations in Linear Algebra

- NUMERICAL NOTE -

To optimize a computer algorithm to compute $A\mathbf{x}$, the sequence of calculations should involve data stored in contiguous memory locations. The most widely used professional algorithms for matrix computations are written in Fortran, a language that stores a matrix as a set of columns. Such algorithms compute $A\mathbf{x}$ as a linear combination of the columns of A. In contrast, if a program is written in the popular language C, which stores matrices by rows, $A\mathbf{x}$ should be computed via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and (c) are logically equivalent. So, it suffices to show (for an arbitrary matrix *A*) that (a) and (d) are either both true or both false. This will tie all four statements together.

Let U be an echelon form of A. Given **b** in \mathbb{R}^m , we can row reduce the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ to an augmented matrix $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ for some **d** in \mathbb{R}^m :

$$\begin{bmatrix} A & \mathbf{b} \end{bmatrix} \sim \cdots \sim \begin{bmatrix} U & \mathbf{d} \end{bmatrix}$$

If statement (d) is true, then each row of U contains a pivot position and there can be no pivot in the augmented column. So $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} , and (a) is true. If (d) is false, the last row of U is all zeros. Let \mathbf{d} be any vector with a 1 in its last entry. Then $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ represents an *inconsistent* system. Since row operations are reversible, $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ can be transformed into the form $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$. The new system $A\mathbf{x} = \mathbf{b}$ is also inconsistent, and (a) is false.

PRACTICE PROBLEMS

1. Let
$$A = \begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -7 \\ 9 \\ 0 \end{bmatrix}$. It can be shown that

p is a solution of A**x** = **b**. Use this fact to exhibit **b** as a specific linear combination of the columns of A.

- **2.** Let $A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$. Verify Theorem 5(a) in this case by computing $A(\mathbf{u} + \mathbf{v})$ and $A\mathbf{u} + A\mathbf{v}$.
- **3.** Construct a 3×3 matrix A and vectors **b** and **c** in \mathbb{R}^3 so that $A\mathbf{x} = \mathbf{b}$ has a solution, but $A\mathbf{x} = \mathbf{c}$ does not.

1.4 EXERCISES

_ _

Compute the products in Exercises 1–4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing $A\mathbf{x}$. If a product is undefined, explain why.

1.
$$\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$$
2.
$$\begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

3. $\begin{bmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ **4.** $\begin{bmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

In Exercises 5–8, use the definition of $A\mathbf{x}$ to write the matrix equation as a vector equation, or vice versa.

5.
$$\begin{bmatrix} 5 & 1 & -8 & 4 \\ -2 & -7 & 3 & -5 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -8 \\ 16 \end{bmatrix}$$

6. $\begin{bmatrix} 7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ 12 \\ -4 \end{bmatrix}$

7.
$$x_1 \begin{bmatrix} 4 \\ -1 \\ 7 \\ -4 \end{bmatrix} + x_2 \begin{bmatrix} -5 \\ 3 \\ -5 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 7 \\ -8 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -8 \\ 0 \\ -7 \end{bmatrix}$$

8. $z_1 \begin{bmatrix} 4 \\ -2 \end{bmatrix} + z_2 \begin{bmatrix} -4 \\ 5 \end{bmatrix} + z_3 \begin{bmatrix} -5 \\ 4 \end{bmatrix} + z_4 \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 13 \end{bmatrix}$

In Exercises 9 and 10, write the system first as a vector equation and then as a matrix equation.

9.
$$3x_1 + x_2 - 5x_3 = 9$$

 $x_2 + 4x_3 = 0$
10. $8x_1 - x_2 = 4$
 $5x_1 + 4x_2 = 1$
 $x_1 - 3x_2 = 2$

Given A and **b** in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector.

11.
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 2 \\ 9 \end{bmatrix}$$

12. $A = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

13. Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$$
 and $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. Is \mathbf{u} in the plane \mathbb{R}^3

spanned by the columns of A? (See the figure.) Why or why not?

14. Let $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$ and $A = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset

of \mathbb{R}^3 spanned by the columns of A? Why or why not?

15. Let $A = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation

 $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible **b**, and describe the set of all **b** for which $A\mathbf{x} = \mathbf{b}$ does have a solution.

16. Repeat Exercise 15: $A = \begin{bmatrix} 1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Exercises 17-20 refer to the matrices A and B below. Make appropriate calculations that justify your answers and mention an appropriate theorem.

1.4 The Matrix Equation $A\mathbf{x} = \mathbf{b}$ **41**

$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

- 17. How many rows of A contain a pivot position? Does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for each \mathbf{b} in \mathbb{R}^4 ?
- 18. Do the columns of B span R⁴? Does the equation Bx = y have a solution for each y in R⁴?
- 19. Can each vector in ℝ⁴ be written as a linear combination of the columns of the matrix A above? Do the columns of A span ℝ⁴?
- **20.** Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix *B* above? Do the columns of *B* span \mathbb{R}^3 ?

21. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}$.

Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^4 ? Why or why not?

22. Let
$$\mathbf{v}_1 = \begin{bmatrix} 0\\0\\-2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0\\-3\\8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4\\-1\\-5 \end{bmatrix}$

Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- **23.** a. The equation $A\mathbf{x} = \mathbf{b}$ is referred to as a *vector equation*.
 - b. A vector **b** is a linear combination of the columns of a matrix A if and only if the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution.
 - c. The equation $A\mathbf{x} = \mathbf{b}$ is consistent if the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row.
 - d. The first entry in the product $A\mathbf{x}$ is a sum of products.
 - e. If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^m .
 - f. If A is an $m \times n$ matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m , then A cannot have a pivot position in every row.
- **24.** a. Every matrix equation $A\mathbf{x} = \mathbf{b}$ corresponds to a vector equation with the same solution set.
 - b. Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.
 - c. The solution set of a linear system whose augmented matrix is $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ is the same as the solution set of $A\mathbf{x} = \mathbf{b}$, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$.
 - d. If the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent, then **b** is not in the set spanned by the columns of A.
 - e. If the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent.

T

42 CHAPTER 1 Linear Equations in Linear Algebra

f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some **b** in \mathbb{R}^m .

25. Note that
$$\begin{bmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix}$$
. Use this fact

(and no row operations) to find scalars c_1, c_2, c_3 such that

$$\begin{bmatrix} -7\\ -3\\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 4\\ 5\\ -6 \end{bmatrix} + c_2 \begin{bmatrix} -3\\ -2\\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1\\ 5\\ -3 \end{bmatrix}.$$

26. Let $\mathbf{u} = \begin{bmatrix} 7\\ 2\\ 5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3\\ 1\\ 3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 6\\ 1\\ 0 \end{bmatrix}$.

It can be shown that $3\mathbf{u} - 5\mathbf{v} - \mathbf{w} = \mathbf{0}$. Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation

$$\begin{bmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 0 \end{bmatrix}.$$

27. Let $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$, and \mathbf{v} represent vectors in \mathbb{R}^5 , and let x_1, x_2 , and x_3 denote scalars. Write the following vector equation as a matrix equation. Identify any symbols you choose to use.

 $x_1\mathbf{q}_1 + x_2\mathbf{q}_2 + x_3\mathbf{q}_3 = \mathbf{v}$

28. Rewrite the (numerical) matrix equation below in symbolic form as a vector equation, using symbols $\mathbf{v}_1, \mathbf{v}_2, \ldots$ for the vectors and c_1, c_2, \ldots for scalars. Define what each symbol represents, using the data given in the matrix equation.

$$\begin{bmatrix} -3 & 5 & -4 & 9 & 7 \\ 5 & 8 & 1 & -2 & -4 \end{bmatrix} \begin{vmatrix} -3 \\ 2 \\ 4 \\ -1 \\ 2 \end{vmatrix} = \begin{bmatrix} 8 \\ -1 \end{bmatrix}$$

- **29.** Construct a 3×3 matrix, not in echelon form, whose columns span \mathbb{R}^3 . Show that the matrix you construct has the desired property.
- **30.** Construct a 3×3 matrix, not in echelon form, whose columns do *not* span \mathbb{R}^3 . Show that the matrix you construct has the desired property.
- **31.** Let *A* be a 3×2 matrix. Explain why the equation $A\mathbf{x} = \mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^3 . Generalize your

SG Mastering Linear Algebra Concepts: Span 1–18

argument to the case of an arbitrary A with more rows than columns.

- **32.** Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about *n* vectors in \mathbb{R}^m when *n* is less than *m*?
- **33.** Suppose *A* is a 4×3 matrix and **b** is a vector in \mathbb{R}^4 with the property that $A\mathbf{x} = \mathbf{b}$ has a unique solution. What can you say about the reduced echelon form of *A*? Justify your answer.
- **34.** Suppose *A* is a 3×3 matrix and **b** is a vector in \mathbb{R}^3 with the property that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Explain why the columns of *A* must span \mathbb{R}^3 .
- **35.** Let A be a 3×4 matrix, let \mathbf{y}_1 and \mathbf{y}_2 be vectors in \mathbb{R}^3 , and let $\mathbf{w} = \mathbf{y}_1 + \mathbf{y}_2$. Suppose $\mathbf{y}_1 = A\mathbf{x}_1$ and $\mathbf{y}_2 = A\mathbf{x}_2$ for some vectors \mathbf{x}_1 and \mathbf{x}_2 in \mathbb{R}^4 . What fact allows you to conclude that the system $A\mathbf{x} = \mathbf{w}$ is consistent? (*Note:* \mathbf{x}_1 and \mathbf{x}_2 denote vectors, not scalar entries in vectors.)
- **36.** Let A be a 5×3 matrix, let y be a vector in \mathbb{R}^3 , and let z be a vector in \mathbb{R}^5 . Suppose $A\mathbf{y} = \mathbf{z}$. What fact allows you to conclude that the system $A\mathbf{x} = 4\mathbf{z}$ is consistent?

[M] In Exercises 37–40, determine if the columns of the matrix span \mathbb{R}^4 .

$$37. \begin{bmatrix} 7 & 2 & -5 & 8 \\ -5 & -3 & 4 & -9 \\ 6 & 10 & -2 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix} 38. \begin{bmatrix} 5 & -7 & -4 & 9 \\ 6 & -8 & -7 & 5 \\ 4 & -4 & -9 & -9 \\ -9 & 11 & 16 & 7 \end{bmatrix}$$
$$39. \begin{bmatrix} 12 & -7 & 11 & -9 & 5 \\ -9 & 4 & -8 & 7 & -3 \\ -6 & 11 & -7 & 3 & -9 \\ 4 & -6 & 10 & -5 & 12 \end{bmatrix}$$
$$40. \begin{bmatrix} 8 & 11 & -6 & -7 & 13 \\ -7 & -8 & 5 & 6 & -9 \\ 11 & 7 & -7 & -9 & -6 \\ -3 & 4 & 1 & 8 & 7 \end{bmatrix}$$

- 41. [M] Find a column of the matrix in Exercise 39 that can be deleted and yet have the remaining matrix columns still span R⁴.
- 42. [M] Find a column of the matrix in Exercise 40 that can be deleted and yet have the remaining matrix columns still span R⁴. Can you delete more than one column?

WEB

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

$$\begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix} = \begin{bmatrix} -7 \\ 9 \\ 0 \end{bmatrix}$$