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Abstract

The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a mag-

netized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and

degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion

acoustic waves (IAWs) are examined in detail. A modified characteristic charge screening length

and “sound speed” are introduced, for relativistic quantum plasmas. By employing the reductive

perturbation technique, a Zakharov-Kuznetzov (ZK) type equation is derived. Using the small −k

expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses

is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic

excitations is investigated. The entire analysis is valid in a three-dimensional (3D) as well as in

two-dimensional (2D) geometry. A brief discussion of possible applications in laboratory and space

plasmas is included.
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I. INTRODUCTION

Electron degeneracy in dense quantum plasmas has recently gained increasing interest,

due to its relevance in a wide range of plasmas in astrophysics, and also in modern technolog-

ical applications. Dense quantum plasmas are found in ultraintense laser beam-solid matter

interaction experiments [1], in which the plasmon frequency is measurably shifted due to

quantum effects [2, 3]. Quantum plasmas are relevant in femto-second pump-probe spec-

troscopy connected to the collective dynamics of degenerate electrons in metallic nanostruc-

tures and thin films [4], in the physics of quantum diodes [5], nanophotonics and nanowires

[6], nanoplasmonics [7], high-gain quantum free-electron lasers [8], quantum wells and piezo-

magnetic quantum dots [9]. Degenerate plasmas may also exist in dense astrophysical ob-

jects, e.g. in the core of giant planets [10] and in the crust of white dwarfs, brown dwarfs,

neutron stars, and magnetars [11, 12].

In a degenerate plasma, the electron number density is extremely high and the tem-

perature is very low. When the de Broglie wavelength of electrons (which is the spatial

extension of the wave function due to the quantum uncertainty principle) can be compara-

ble to, or larger than, the average inter-electron distance d = n
−1/3
e , quantum effects become

significant and can not be ignored. Electrons can more easily reach the quantum regime

than ions because of their smaller mass; at room temperature electrons begin to behave

quantum mechanically at number density of about 1020 cm−3, while the electron density

for metals is normally larger than 1022 cm−3, giving rise to electron Fermi temperature

of order 104 K, to be considered within the quantum regime. The continuous motion of

an electron in degenerate plasma around its position exerts a pressure on the surrounding

plasma; this pressure is referred to as the electron degeneracy pressure Pe. An expression

for the degeneracy pressure was employed by Chandrasekhar [13, 14] to estimate the critical

mass limit of white dwarfs. Recently, Shukla and Eliasson [15, 16] discussed theoretically

the nonlinear aspects and collective interactions for degenerate plasmas. Later, Haas and

Kourakis [17] used the one-dimensional version of the electron pressure equation, expressed

by Chandrasekhar [13, 14], to study the evolution of hydrodynamic Langmuir waves in fully

degenerate relativistic plasma. McKerr et al. adopted the same fluid model to investigate

the occurrence of modulated envelope structures within a (1D) nonlinear Schrödinger (NLS)

framework [18].
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Interestingly, the existence of acoustic-type modes has been proposed in white dwarf

stars [19, 20], where ions might provide the inertia while the electron degeneracy pressure

may provide the restoring force. Although such modes have been argued to exist [21], these

haven’t been observed to date [20]. The possibility for the occurrence of acoustic waves

was also suggested in relevance with extreme events such as supernova explosions [19, 22].

Various theoretical investigations have been proposed, predicting excitations which are yet

to be detected [23–26].

The propagation of small amplitude nonlinear excitations, in the form of electrostatic

pulses, in a multidimensional (2D or 3D) plasma geometry is known to be governed by the

Zakharov-Kuznetsov (ZK) equation [27], which is a generic paradigm for solitary waves in

dispersive media [28]. The ZK equation can be viewed as a canonical multidimensional

extension of the Korteweg-de Vries (KdV) equation [29]. Zakharov and Kuznetsov [27] used

this equation to study the behavior of weakly nonlinear ion acoustic waves (IAWs) in plasma

comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field.

Frycz and Infeld [30] investigated the instability of small amplitude nonlinear waves by

using the solutions of the ZK equation. Later, Allen and Rowlands [31, 32] investigated the

stability profile of solutions of the ZK equation via the k− expansion perturbation method,

based on the Floquet theorem. The small−k expansion perturbation method [31, 32] has

also been employed to study the instability of nonlinear waves obliquely propagating in

magnetized plasmas [33–35].

In this article, we have considered a three-dimensional (3D) fluid model for ion acoustic

excitations in a degenerate relativistic plasma immersed in an external static magnetic field.

The electron pressure is assumed to be described by a Chandrasekhar type equation of

state [13, 14]. At a first step, we have carried out a Fourier-type linear analysis, to identify

linear modes occurring in this model. A modified ion-acoustic wave was thus shown to

exist, alongside a Langmuir-like “optical” mode, characterized by a frequency cutoff at the

origin. Proceeding the analysis by anticipating stationary-profile solitary structures, we have

adopted a small-amplitude nonlinear multi-scale (reductive perturbation) theory, in search

of an evolution equation for the amplitude of an electrostatic perturbation. The analysis

shows that these structures may be unstable to external perturbations, which is arguably

due to the effect of bilateral perturbations, in contrast with the one-dimensional case [31, 32].

This paper is organized in the following manner. In Section II, we introduce a relativistic
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plasma fluid model for low-frequency (ionic scale) electrostatic waves. A linear analysis is

carried out, and the existence and dispersion characteristics of linear modes are discussed

in Section IV. A nonlinear perturbation technique is employed in Section V, where we show

that the electrostatic potential is governed by a Zakharov-Kuznetsov equation. The charac-

teristic properties of solitary waves occurring as exact solution of the model are examined

in Section VI. The stability of the localized solutions is investigated via an adequate mul-

tiscale (small−k expansion) methodology in Section VII. Finally, we discuss our results in

the concluding Section VIII.

II. THE MODEL

Let us consider the propagation of ion acoustic (IA) excitations in a degenerate relativistic

plasma, in the presence of an external static magnetic field aligned to the z−direction:

B = B0ẑ (where B0 denotes the magnetic field strength and ẑ is the unit vector along z).

We shall adopt the relativistic plasma fluid model introduced in Ref. 18, extending it to a

multidimensional geometry, in the form:

∂

∂t
(γini) +∇. (γiniui) = 0, (1)

∂

∂t
(γene) +∇. (γeneue) = 0, (2)

∂

∂t
(γiui) + (ui.∇) (γiui) =

−ezi
mi

∇ϕ+
eziB0

mi

(ui × ẑ) , (3)

0 = e∇ϕ− eB0 (ue × ẑ)− mec
2γe

Pe + ρe

(
∇+

ue

c2
∂

∂t

)
Pe, (4)

∇2ϕ =
e

ϵ0
(γene − γizini) , (5)

where ne and ni and denote the electron and ion fluid number densities, respectively, ue

and ui are the corresponding fluid velocities and the electron mass (me), ion mass (mi),

electron charge (e, in absolute value), ionic charge (+zie) and light speed (c) carry their

usual notation. The latter system has been expressed in SI units.

The electron pressure Pe is given by

Pe =
m4c5

24π2}3
[
α
(
2α2 − 3

) (
α2 + 1

)1/2
+ 3 sinh−1 α

]
, (6)

where } = h/2π is the reduced Planck constant. Furthermore [18],

Pe + ρe = nemec
2
√
α2 + 1, (7)
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where ρe is the electron fluid internal energy density. We have defined the parameter

α =
pFe

mec
=

}
mec

(
3π2ne

)1/3
. (8)

Considering the equilibrium state, we shall also define

α0 =
}
mec

(
3π2ne0

)1/3
, hence α = α0

(
ne

neo

)1/3

.

Charge neutrality condition at equilibrium imposes ne0 = zini0.

It should be noted, for rigor, that an additional quantum term, namely the so-called

Bohm potential, in account of quantum diffraction, could have been added to the momentum

equations. Such a contribution, however, would be comparable to the Fermi pressure only

for extremely small wavelengths of the order of the mean inter-particle distance [36], and

will therefore be omitted in this study.

III. SCALING AND DIMENSIONLESS MODEL

We shall normalize Eqs. (1-5), upon setting, formally ∇ →L−1
0 ∇̃ , t → T0t̃, ui →

V0ũi, ue → V0ũe and ϕ → φ0ϕ̃, where the tilde’d quantities are dimensionless. Once

the transformation has been carried out, leading to the system of Eqs. (9)-(13) below, the

tilde will be omitted in the following, for simplicity. The scaling quantities adopted above

were chosen appropriately as:

L0 =

(
ϵ0EFe

e2z2i nio

)1/2

, V0 =
L0

T0
=

(
EFe

mi

)1/2

,

T0 = ω−1
pi =

(
ϵ0mi

e2z2i nio

)1/2

and φ0 =
EFe

ezi
.

The electron Fermi energy EFe in the relativistic regime reads

EFe =
√
p2Fec

2 +m2
ec

4 −mec
2.

Combining with Eqs. (1)-(8), we obtain the following set of normalized (dimensionless)
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equations:

∂

∂t
(γini) +∇. (γiniui) = 0, (9)

∂

∂t
(γene) +∇. (γeneue) = 0, (10)

∂

∂t
(γiui) + (ui.∇) (γiui) = −∇ϕ+ Ω(ui × ẑ) , (11)

0 = ∇ϕ− Ω (ue × ẑ)− βα2
0γen

−1/3
e

α2
0n

2/3
e + 1

(
∇+ δ ue

∂

∂t

)
ne, (12)

∇2ϕ = γene − γini, (13)

where we have defined the quantities

Ω =
eziB0T0
mi

=
ωci

ωpi

, β =
mec

2

3eϕ0

=
mec

2zi
3EFe

,

and δ =
V 2
0

c2
=

EFe

mic2
. (14)

The above system of equations forms the basis of the analysis that follows. All quantities

are henceforth to be considered as dimensionless, unless otherwise stated.

IV. LINEAR ANALYSIS

Let us consider small amplitude harmonic excitations, by assuming that all of the state

variables vary as

G = G0 +G1e
i(k.r−ωt),

where G = [ni, ne,ui,ue, ϕ] is the state vector. The reference state and the corresponding

(small) perturbation are expressed as G0 = [1, 1, 0, 0, 0] and G1 = [ni1, ne1,ui1,ue1, ϕ1] (the

notation adopted here is self-explanatory). A lengthy set of linear equations is thus obtained,

in terms of the in terms of the normalized frequency ω and the wavenumber k (components).

A tedious but perfectly straightforward calculation leads to the dispersion relation

ω4 −
[
ω2
0 (k) + Ω2

]
ω2 +

k2∥
k2 + F−1

Ω2 = 0 , (15)

where we have defined the quantity F =
βα2

0

α2
0+1

. The modulus of the wavevector is expressed

in the usual way as k2 = k2x + k2y + k2z ≡ k2∥ + k2⊥. The function

ω2
0(k) =

k2

k2 + F−1
, (16)
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FIG. 1: (Color online) The angular frequency ω (scaled by ωpi) is depicted versus the parallel

component of the wavenumber k∥ (scaled by L−1
0 ). Here, the lower curves (blue color) and the

upper curve(s) (red color) represent the lower (acoustic) and upper (Langmuir-like) mode, ω−

and ω+, respectively. We have taken ne0 = 1 × 1035 m−3, i.e. α0 = 0.55, EFe = 73.4 KeV,

Ω(= ωci/ωpi) = 0.25.

represents the frequency (square) of linear IAWs in an unmagnetized plasma (to see this,

set Ω = 0 in the latter dispersion relation, to obtain ω = ω0(k)).

The solution of the dispersion relation (15) reads

ω2
± =

1

2

[
ω2
0 (k) + Ω2

]
×

1±√
1−

4k2∥
(k2 + F−1)

Ω2

[ω2
0 (k) + Ω2]

2

 . (17)

We note the existence of two modes, namely a lower (slow) mode, ω−, and an upper (fast)

mode, ω+. These represent, respectively, an acoustic mode and a Langmuir-like mode, the

latter featuring a cutoff (gap) frequency in the infinite wavelength limit. The two dispersion

curves are depicted in Figures 1-5. (Clearly, the analogy with Langmuir waves is only

structural here: this mode is sustained by the ion inertia too, instead of the electron inertia

-here neglected- which would sustain electron plasma-Langmuir waves, properly speaking.)

A. Parallel propagation

Let us consider the case k = k∥ (viz., k⊥ = 0). The dispersion relation (15) reduces to

ω4 −
[
ω2
0

(
k∥
)
+ Ω2

]
ω2 + ω2

0

(
k∥
)
Ω2 = 0 , (18)
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FIG. 2: (Color online) The angular frequency ω (scaled by ωpi) is depicted versus the perpendicular

component of the wavenumber k⊥ (scaled by L−1
0 ). Here, the lower curves (blue color) and the

upper curves (red color) represent the lower and upper mode, ω− and ω+, respectively. We have

taken ne0 = 1× 1035 m−3, i.e. α0 = 0.55, EFe = 73.4 KeV, Ω(= ωci/ωpi) = 0.25.

FIG. 3: (Color online) Three-dimensional plot of the lower (acoustic) and upper (Langmuir-like)

mode: the angular frequency ω (scaled by ωpi) is depicted versus both parallel and perpendicular

components of the wavenumber (k∥ and k⊥, both scaled by L−1
0 ). We have taken ne0 = 1×1035 m−3,

i.e. α0 = 0.55, EFe = 73.4 KeV, Ω(= ωci/ωpi) = 0.25.

whose solution, say ω = ω∥, is given by

ω2
∥ = ω2

0

(
k∥
)
=

k2∥
k2∥ + F−1

. (19)

Here, we have overlooked a trivial non-propagating solution ω = Ω. Noting the limits

lim
k∥→0,k⊥→0

ω∥ = 0, (20)

and lim
k∥→0

(
ω∥

k∥

)
=

√
F =

√
βα2

0

α2
0 + 1

, (21)
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FIG. 4: (Color online) The parallel mode (in blue color) and the perpendicular mode (in red color)

(angular frequency ω scaled by ωpi) are depicted versus the wavenumber k (scaled by L−1
0 ) for

different ne0 values, taking Ω(= ωci/ωpi) = 0.25.

we deduce that the parallel solution is a propagating acoustic mode and
√
F is physically to

be interpreted as the phase speed of this mode. This is essentially the true “sound speed”

in this plasma configuration, taking into account relativistic and degeneracy effects.

B. Perpendicular propagation

Let us now consider the case k = k⊥ (i.e., k∥ = 0), in account of propagation in the

transverse direction, with respect to the ambient magnetic field (direction). The frequency

of transverse modes, say, ω = ω⊥, is given by the dispersion relation (15) which now reduces

to

ω4
⊥ −

[
ω2
⊥0 + Ω2

]
ω2
⊥ = 0 . (22)

Hence, the perpendicular frequency can be obtained as

ω2
⊥ = ω2

0 (k⊥) + Ω2, (23)

ω2
0 (k⊥) =

k2⊥
k2⊥ + F−1

. (24)

Equation (23) shows that the perpendicular mode has a nonzero value Ω2 at k⊥ → 0.

The parallel and perpendicular modes are depicted in Figures 4 and 5.
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FIG. 5: (Color online) The characteristic “sound speed” Crel
s (scaled by V0) is depicted versus ne0

(in m−3).

C. The unmagnetized limit

In the vanishing magnetic field limit, i.e. upon setting Ω = 0, one obtains

ω2
− = 0,

ω2
+ = ω2

0(k) =
k2

k2 + F−1
. (25)

Equation (25) represents the linear dispersion relation of IAWs in an unmagnetized plasma.

As physically expected, the latter dispersion relation coincides with the analogous expression

for parallel propagation, since the Lorentz force disappears in the latter case.

D. Asymptotic behavior

For large values of k∥, the solution (17) of the dispersion relation (15) behaves as

lim
k∥→∞

(
ω2
−
)
= Ω2,

lim
k∥→∞

(
ω2
+

)
= 1 .

(26)

In an analogous way, for large values of k⊥, one obtains

lim
k⊥→∞

(
ω2
−
)
= 0,

lim
k⊥→∞

(
ω2
+

)
= Ω2 + 1.

(27)
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FIG. 6: (Color online) The characteristic charge screening length λrel
sc (scaled by L0) is depicted

versus ne0 (in m−3).

E. Relativistic screening mechanism

The cases considered above indicate that the functional form ω2
0(k) is an essential char-

acteristic of the wave dispersion. We can rewrite ω2
0(k) as

ω2
0(k) =

k2

k2 + (λrelsc )
−2 , (28)

where λrelsc is the characteristic charge screening length (here normalized by L0), in the

relativistic regime:

λrelsc = F−1/2L0 =

(
βα2

0

α2
0 + 1

)−1/2(
ϵ0EFe

e2z2i nio

)1/2

(29)

λrelsc is analogous to the classical Debye radius λD, here modified in account of relativistic

effects. Accordingly, the (modified) “true” sound speed in the plasma Crel
s , taking into

account the relativistic correction, reads

Crel
s = F 1/2V0 =

(
βα2

0

α2
0 + 1

)1/2 (
EFe

mi

)1/2

. (30)

In the latter two expressions, we have recovered dimensions, for clarity. Figures 5 and

6 indicate the dependence of Crel
s and λrelsc on ne0. It is clear that Crel

s (λrelsc ) decreases

(increases) as ne0 increases.

V. NONLINEAR ANALYSIS

In order to study weak-amplitude superacoustic electrostatic excitations, we may em-

ploy the reductive perturbation method of Taniuti and coworkers [37]. A set of stretched
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coordinates are introduced as

X = ϵ1/2x, Y = ϵ1/2y, Z = ϵ1/2(z − λt), T = ϵ3/2t,

accounting for propagation along the z axis at a speed λ (which is to be defined later by

compatibility requirements). The ad hoc (real) parameter ϵ is assumed to be small, i.e.

ϵ≪ 1. The plasma state variables are expanded near their equilibrium values as

nj = 1 + ϵnj1 + ϵ2nj2 + ...,

ujx = ϵ3/2ujx1 + ϵ2ujx2 + ...,

ujy = ϵ3/2ujy1 + ϵ2ujy2 + ...,

ujz = ϵujz1 + ϵ2ujz2 + ...,

ϕ = ϵϕ1 + ϵ2ϕ2 + ... ,

(31)

where the subscript j stands for either e (for electrons) or i (for ions).

We proceed by combining the above analytical expansions and the stretched coordinates

into Eqs. (9− 13), and then collecting terms of the same powers of ϵ. At the lowest order,

we obtain

ni1 =
ϕ1

λ2
, ne1 =

(α2
0 + 1)ϕ1

βα2
0

,

uiz1 =
ϕ1

λ
, uez1 =

λ (α2
0 + 1)ϕ1

βα2
0

. (32)

A compatibility condition is imposed, in the form

λ2 =
βα2

0

α2
0 + 1

, (33)

which leads, as a consequence, to uiz1 = uez1; cf. Eq.(32).

Now, equating the coefficients of the second higher order of ϵ gives rise to the following

set of equations

λ
∂ni2

∂Z
− ∂uiz2

∂Z
=
∂ni1

∂T
+
∂uix2
∂x

+
∂uiy2
∂y

+
∂ (ni1uiz1)

∂Z
,

λ
∂ne2

∂Z
− ∂uez2

∂Z
=
∂ne1

∂T
+
∂ (ne1uez1)

∂Z
,

λ
∂uiz2
∂Z

− ∂ϕ2

∂Z
=
∂uiz1
∂T

+ uiz1
∂uiz1
∂Z

,

λ2
∂ne2

∂Z
− ∂ϕ2

∂Z
=
λ2 (3α2

0 + 1)

3 (α2
0 + 1)

ne1
∂nez1

∂Z
+ δλ3uez1

∂ne1

∂Z

∂ne2

∂Z
− ∂ni2

∂Z
=

(
∂3ϕ1

∂Z∂X2
+

∂3ϕ1

∂Z∂Y 2
+
∂3ϕ1

∂Z3

)
+ 2δ

(
uiz1

∂uiz1
∂Z

− uez1
∂uez1
∂Z

)
. (34)
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Combining these equations, we obtain a partial-differential equation (PDE) in the form:

∂ϕ1

∂T
+ Aϕ1

∂ϕ1

∂Z
+B

∂3ϕ1

∂Z3
+ C

(
∂3ϕ1

∂Z∂X2
+

∂3ϕ1

∂Z∂Y 2

)
= 0, (35)

where the (real) coefficients A,B and C are given by the expressions:

A =

[(
1− δβ

2

)
α2
0 +

4

3

]
/
[
βα2

0

(
α2
0 + 1

)]1/2
, (36)

B =
1

2

(
βα2

0

α2
0 + 1

)3/2

, (37)

and

C = B
(
Ω−2 + 1

)
. (38)

The latter PDE is recognized as the Zakharov-Kuznetsov (ZK) equation [28].

VI. SOLITARY WAVE ANALYSIS

To study the properties of IA solitary waves propagating in a direction making an angle θ

with the z−axis, i.e., with the external static magnetic field, say lying in the ZX plane, we

shall first rotate the coordinate axes (X,Z) by an angle θ and making use of the following

transformation of the independent variables [31–33]

ζ = X cos θ − Z sin θ, ξ = X sin θ + Z cos θ,

η = Y and τ = T. (39)

Applying these transformations to the ZK Eq. (35), we obtain

∂ϕ1

∂τ
+ S1ϕ1

∂ϕ1

∂ξ
+ S2

∂3ϕ1

∂ξ3
+ S3ϕ1

∂ϕ1

∂ζ
+ S4

∂3ϕ1

∂ζ3
+

S5
∂3ϕ1

∂ξ2∂ζ
+ S6

∂3ϕ1

∂ξ∂ζ2
+ S7

∂3ϕ1

∂ξ∂η2
+ S8

∂3ϕ1

∂ζ∂η2
= 0, (40)

where

S1 = A cos θ, S2 = B cos3 θ + C sin2 θ cos θ,

S3 = −A sin θ, δ4 = −B sin3 θ − C cos2 θ sin θ,

S5 = 2C
(
sin θ cos2 θ − 1

2
sin3 θ

)
− 3B cos2 θ sin θ,

S6 = −2C
(
sin2 θ cos θ − 1

2
cos3 θ

)
+ 3B sin2 θ cos θ,

S7 = C cos θ, S8 = −C sin θ.


(41)
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FIG. 7: (Color online) The amplitude of the solitary wave (scaled by φ0) is depicted versus ne0 (in

m−3) at different M values. Here, θ = 5◦.

Now, we look for a steady state solution of ZK equation in the form

ϕ1 = ϕ0 (ρ) , (42)

where ρ = ξ −Mτ , and M is the Mach number normalized by the dust acoustic speed cd.

So, the ZK equation in the steady state form leads to,

−M∂ϕ0

∂ρ
+ S1ϕ0

∂ϕ0

∂ρ
+ S2

∂3ϕ0

∂ρ3
= 0. (43)

Using the appropriate boundary conditions, namely ϕ0 and derivatives vanishing as ρ goes

to infinity, Eq. (20) has the following solution

ϕ0(ρ) = ϕm sech2
( ρ

W

)
, (44)

where ϕm and W are the amplitude and the width of the solitary wave, respectively; these

are given by the expressions

ϕm = 3M/S1 and W = 2
√
S2/M. (45)

Obviously, reality of the width W imposes S2 > 0. Furthermore, the polarity of the

potential pulse, i.e. the sign of the solitary wave function is positive if S1 > 0, and negative

otherwise (S1 < 0). Accordingly, the electric field
−→
E may be calculated, based on Eq. (44),

as

−→
E = E0 sech

2
( ρ

W

)
tanh

( ρ

W

)
sin θ

0

cos θ

 , (46)
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FIG. 8: (Color online) The width of the solitary wave (scaled by L0) is depicted versus ne0 (in

m−3) for different M values. Here, θ = 5◦, and Ω(= ωci
ωpi

) = 0.25.

FIG. 9: (Color online) The coefficient S1 is depicted versus ne0 (in m−3). Here, θ = 5◦.

in column vector notation, i.e. v = vxx̂ + vyŷ + vz ẑ = (vx, vy, vz)
T . The maximum electric

field reads E0 = 3
S1

√
M3

S2
. It is clear from Eqs. (41) and (45) that the amplitude and the

width of the solitary wave depend on the electron degeneracy. Figures 7 and 8 show that

both amplitude and width of the solitary wave decrease as ne0 increases.

The coefficients S1 and S2 are depicted in terms of ne0 in Figs. 9 and 10. It is found that

S1(S2) increases (decreases) rapidly as ne0 increases.

FIG. 10: (Color online) The coefficient S2 is depicted versus ne0 (in m−3). Here, θ = 5◦, and

Ω(= ωci
ωpi

) = 0.25.
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FIG. 11: Geometrical direction diagram of the propagating wave at equilibrium ϕ0 and the per-

turbation part Ψ.

VII. STABILITY ANALYSIS

We shall now apply the small−k expansion perturbation method [31, 32] to study the

stability of obliquely propagating IA structures. We assume that [33, 34]

ϕ1 = ϕ0 (ρ) + Ψ(ρ, ζ, η, τ), (47)

where ϕ0 is defined by Eq.(44) and Ψ represents a long wavelength plane wave perturbation

in an oblique direction, given by

Ψ(ρ, ζ, η, τ) = ψ(ρ)ei[k(lξρ+lζζ+lηη)−γτ ] . (48)

Obviously, (lξ, lζ , lη) are directional cosines, hence l2ζ + l2η + l2ξ = 1.

Assuming small values of k, ψ(ρ) and γ can be expanded as

ψ(ρ) = ψ0 + kψ1 + k2ψ2 + ..., (49)

γ = kγ1 + k2γ2 + ... . (50)

Substituting Eq. (47) into Eq. (40) and linearizing with respect to ψ, the linearized ZK

equation becomes

∂Ψ

∂τ
−M

∂Ψ

∂ρ
+ S1ϕ0

∂Ψ

∂ρ
+ S1Ψ

∂ϕ0

∂ρ
+ S2

∂3Ψ

∂ρ3
+

S3ϕ0
∂Ψ

∂ζ
+ S4

∂3Ψ

∂ζ3
+ S5

∂3Ψ

∂ρ2∂ζ
+ S6

∂3Ψ

∂ρ∂ζ2
+

S7
∂3Ψ

∂ρ∂η2
+ S8

∂3Ψ

∂ζ∂η2
= 0. (51)
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Substituting Eqs. (48− 50) into Eq. (51) and equating the coefficients of the same powers

of k, in the zeroth-order, we get

(−M + S1ϕ0)ψ0 + S2
d2ψ0

dρ2
= C̃, (52)

where C̃ is the integration constant. It is clear from Eq (43) that the homogeneous part of

this equation has two linearly independent solutions, namely, [33]

f =
dϕ0

dρ
, g = f

∫ ρ dρ

f 2
. (53)

Therefore, the general solution of this zeroth-order, Eq. (52), can be written as

ψ0 = C1f + C2g − C̃f

∫ ρ g

W̃
dρ+ C̃g

∫ ρ f

W̃
dρ, (54)

where C1 and C2 are the integration constants and W̃ is the Wronskian defined by W̃ =

f (dg/dρ) − g (df/dρ). Evaluating all integrals, the general solution of the zeroth order

equation, assuming finite ψ0 as ρ→ ±∞, can be finally simplified to

ψ0 = C1f. (55)

The first-order equation, obtained from Eqs (48 − 51) and (55) can be expressed, after

integration, as

(−M + S1ϕ0)ψ1 + S2
d2ψ1

dρ2
=

iC1

[
β1 tanh

2
( ρ

W

)
+ β2

]
ϕ0 + C3, (56)

where C3 is another integration constant and β1 and β2 are given by

β1 =
1

2
ϕmµ1 −

6

W 2
µ2, (57)

β2 = γ1 +Mlξ −
1

2
ϕmµ1 +

2

W 2
µ2, (58)

where

µ1 = (S1lξ + S3lζ) and µ2 = (3S2lξ + S5lζ) . (59)

Similarly, the general solution of the first order equation, assuming finite ψ1 as ρ→ ±∞,

is given by

ψ1 = K1f +
iC1W

2

8S2

[
(β1 + β2) ρf + 2

(
1

3
β1 + β2

)
ϕ0

]
, (60)
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where K1 is an arbitrary constant. The second order equation, obtained from Eq (51), is

given as (
−M d

dρ
+ S1

d

dρ
ϕ0 + S2

d3

dρ3

)
ψ2 = Q, (61)

where

Q = iγ2ψ0 + i (γ1 +Mlξ − µ1ϕ0)ψ1 + µ3
dψ0

dρ
− iµ2

d2ψ1

dρ2
, (62)

µ3 =
(
3S2l

2
ξ + 2S5lζ lξ + S6l

2
ζ + S7l

2
η

)
, (63)

The existence of the solution of Eq (61) requires that Q must be orthogonal to the kernel

of the adjoint operator to the operator L, which is given by

L = −M d

dρ
+ S1

d

dρ
ϕ0 + S2

d3

dρ3
. (64)

Thus, we obtain the following consistency condition∫ ∞

−∞
ϕ0Qdρ = 0. (65)

Substituting for ψ0 and ψ1 from Eqs. (55) and (60), respectively, into Eq. (65), we obtain

the following dispersion relation

γ1 = ∆−Mlξ +
√
∆2 − Γ, (66)

where

∆ =
2

3

(
µ1ϕm − 2µ2/W

2
)
, (67)

Γ =
16

45

(
µ2
1ϕ

2
m − 3µ1µ2ϕm/W

2 − 3µ2
2/W

4 + 12S2µ3/W
4
)
. (68)

Hence, from Eq. (66), we notice that instability occurs if the following condition is satisfied:

Γ−∆2 > 0, (69)

Thus, using Eqs. (41, 45, 59, 63, 67 − 68), we obtain the growth rate gr =
√
Γ−∆2 of the

instability as follows

gr =
2M√
15

(Ω2 + 1)
1/2
I
1/2
cr

(Ω2 + 1) cos θ − cos3 θ
. (70)

We retain the instability criterion Icr > 0, where

Icr =
1

6
l2ζ
(
−2Ω2 − 5 +

(
8Ω2 + 5

)
cos 2θ

)
+ 2l2η

((Ω2 + 1) cos θ − cos3 θ)
2

2Ω2 + 1− cos 2θ
, (71)
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FIG. 12: The characteristic function Icr, given by (71), is depicted versus the direction cosine lζ

(cf. Eq (49)), for different Ω values. Here, lη = 0.6, θ = 15◦ and M = 1.2.

FIG. 13: The instability growth rate gr, given by (70), is depicted versus the direction cosine lζ

(cf. Eq. (48)), for different Ω values. Here, lη = 0.6, θ = 15◦ and M = 1.2.

It is clear from Eq. (70) for gr that the instability growth rate depends on Ω (= ωci/ωpi),

which is affected by the electron degeneracy at equilibrium (via the dependence of ωpi on the

equilibrium density), assuming that a constant external magnetic field is considered. Figure

12 determines the parametric region of instability, Icr > 0, with respect to lζ and Ω. Here,

the points at which Icr = 0 are the transient points from instability to stability. Also, the

growth rate of instability gr decreases rapidly as the direction cosine lζ increases and gr is

drastically affected by variations in Ω values, as shown in Fig. 13.

VIII. CONCLUSIONS

We have employed a quantum hydrodynamic model for a magnetized relativistic degen-

erate plasma, in order to investigate the propagation of linear and nonlinear electrostatic

solitary waves of electrostatic nature and to characterize their dispersion properties.
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A set of modified expressions have been presented for the characteristic charge screening

length, λrelsc , and for the sound speed in the plasma, Crel
s , taking into account the relativistic

corrections. The sound speed Crel
s decreases rapidly as ne0 increases. Inversely, λ

rel
sc increases

with higher ne0, as shown in Figs. 5 and 6.

A nonlinear perturbation technique was employed to study nonlinear small-amplitude

weakly superacoustic ion-acoustic excitations. A Zakharov-Kuznetzov (ZK) type equation

equation was derived and a family of exact solutions was analytically obtained. These

represent solitary wave type structures in the form of pulses, whose amplitude and width

decrease as ne0 increases (see Fig. 7 and 8). A (3D) instability analysis for the nonlinear

supersonic pulses, adopting a small −k expansion methodology, has revealed that these

structures are unstable. Analytical expressions for the instability growth rate gr have been

deduced.

Our model may be useful in understanding the dynamics of collective excitations in metal-

lic nanostructures and thin films [4], and also the physics of quantum diodes [5], nanopho-

tonics and nanowires [6], nanoplasmonics [7], high-gain quantum free-electron lasers [8],

quantum wells and piezomagnetic quantum dots [9]. Degenerate plasmas may also exist

in dense astrophysical objects, e.g. in the core of giant planets [10] and in the crust of

white dwarfs, brown dwarfs, neutron stars, and magnetars [11, 12]. As discussed above, the

existence of electrostatic modes such environments has been suggested in the past [19, 19–

22], and yet, not surprisingly (given the obvious intrinsic observation and diagnostics issues

involved), these haven’t been observed to date [20].
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