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Abstract

The nonlinear dynamics of self-bound Bose-Einstein matter waves under the action of an attrac-

tive nonlocal and a repulsive local interaction is analyzed by means of a time-dependent variational

formalism. The mean-field model described by the Gross-Pitaevskii equation is reduced to a single

second-order conservative ordinary differential equation admitting a potential function. The sta-

ble fixed points and the linear oscillation frequencies of the breather modes are determined. The

chosen nonlocal interactions are a Gaussian-shaped potential and a van der Waals-like potential.

The variational solutions are compared with direct numerical simulations of the Gross-Pitaevskii

equation, for each of these nonlocalities. The spatio-temporal frequency spectra of linear waves are

also determined.

PACS numbers: 03.75.Kk, 31.15.xt, 67.85.-d
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I. INTRODUCTION

In many situations, nonlocal spatial interactions play a central role. In particular, the

experimental observations of dipolar Bose-Einstein condensates (BECs) in systems composed

of atoms with a large magnetic moment provided a breakthrough in ultra-cold gas physics

[1]-[3]. The creation of self-bound quantum matter waves, or quantum balls [4], has become

a concrete possibility to be realized in the near future. Proposals include the self-trapping

of mesoscopic atomic clouds by a collective excitation of Rydberg atom pairs [5], additional

interactions in dilute BECs of alkali atoms besides the dipolar interaction, creating 2D BEC

solitons [6], the role of the orbital angular momentum on the arrest of collapse of vortex-

free elliptical clouds of BECs described by Ermakov systems [7, 8], and the manipulation

of the atomic scattering length through Feshbach resonance to produce stable solitons [9].

In a more general sense, nonlocality is present e.g. in nematic liquid crystals with long-

range molecular forces [10], plasmas with a non-local response due to heating and ionization

processes [11], the arrested collapse of ultra-cold magnetic gases due to quantum fluctuations

[12], the crossover from a dilute BEC to a macrodroplet in a dipolar quantum fluid [13],

the Rosensweig instability of quantum ferrofluids [14], ballistic transport of atoms [15],

or the propagation of light beams in anisotropic nonlinear media [16]. Nonlocality is a

decisive influence on the modulational instability of Kerr media [17], as well on the soliton

stabilization and collapse arrest in nonlocal nonlinear systems [18].

In the present work, we analyze the nonlinear, time-dependent dynamics in a BEC with

local and nonlocal interactions by means of a variational treatment, without external confine-

ment. Previous studies in the literature on long-range interaction BECs include, for instance,

descriptions restricted to the linear regime [6], specific interactions such as between dark soli-

tons in dipolar BECs [19] by means of the direct simulation of the mean-field equation [20],

including an external trapping potential instead of a local coupling [21, 22], higher-order dis-

sipative nonlinearities [23], application of the Thomas-Fermi approximation [24], focusing on

stationary solutions [25], among other distinctive features. Our time-dependent variational

formalism may also be adapted for bosonic systems in a cavity, including experiment [26, 27]

and theory for cavity back-action [28] and measurement back-action [29].

The dipole-dipole coupling is anisotropic and long range, making analytical progress more

difficult. Therefore, we follow previous works [5, 21, 30–33] proposing a Gaussian kernel,
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which is particularly well suited for detailed calculations. In addition, a nonlocal coupling

reminiscent of the van der Waals potential [5, 24, 34] will be also studied. The specific kernel

does not qualitatively change our results, as seen in the comparison between the dynamics for

Gaussian and van der Waals-like potentials (Section IV). Other possible nonlocal interactions

include a Lorentzian shape [22] and singular 1/rn couplings, with n ≥ 1 [25, 35, 36].

This work is organized as follows. In Section II, we introduce our basic mean-field model

in terms of a nonlocal nonlinear Schrödinger equation and the associated variational formal-

ism, with a Gaussian kernel. In Section III, a suitable time-dependent Ansatz is proposed for

the wave function, which reduces the problem to a nonlinear second-order ordinary equation.

Being conservative, the resulting dynamical system is associated with a potential function,

which allows a sensible interpretation of the linear stability analysis results. Section IV

provides a numerical stability analysis of the variational solutions, by means of direct simu-

lation of the original mean field, nonlocal nonlinear Schrödinger equation. Section V discuss

the spectrum of linear excitations. Finally, Section VI contains our conclusions.

II. VARIATIONAL APPROACH

The Gross-Pitaevskii equation (GPE) with a nonlocal interaction [37] term can be written

as

i~∂tψ =

(
−~2∇2

2M
+ g|ψ|2 +

∫
W (r− r′)|ψ(r′)|2d3r′

)
ψ , (1)

where ~ is the reduced Planck constant, M is the boson mass and g = 4π~2a/M is the

coupling constant in terms of the boson-boson s-wave scattering length a. For simplicity we

omit writing the explicit time-dependence of the wavefunction ψ(r, t) in Eq. (1) and in some

equations below. We first consider a Gaussian kernel specified by

W (r− r′) = W0 exp

(
− |r− r′|2

2R2

)
, (2)

where the constants W0 and R are, respectively, the strength and range of the nonlocal

interaction. Henceforth, we assume g ≥ 0 and W0 < 0, so that the local (contact) and

nonlocal couplings are respectively repulsive and attractive. Although the sign and strength

of g could be tuned by Fesbach’s resonance, we exclude attractive contact interactions (g < 0)

since these are always unstable against collapse in the absence of an external confinement

[1, 38]. See also the comments below Eqs. (9) and (13) in the following. Notice that
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our mean-field treatment is valid for dilute condensates where the nonlocal GPE correctly

describes the ground state behavior, and so that strongly collisional regimes are avoided.

Although the Gaussian kernel is not directly related to physical potentials, it is frequently

used [5, 21, 30–33] as an approximate model for nonlocal nonlinearities, since it gives rise to

tractable analytical expressions.

The following normalizations to dimensionless variables will henceforth be applied,

r → r

R
, t→ t

τ
, ψ →

(
R3

N

)1/2

ψ , (3)

in terms of the characteristic time-scale τ = MR2/~, and where N = ⟨ψ|ψ⟩ is the number

of particles.

The dimensionless GPE becomes

i∂tψ =

(
−∇2

2
+ (2π)3/2 γ|ψ|2 − α

∫
exp

(
− |r− r′|2

2

)
|ψ(r′)|2d3r′

)
ψ , (4)

using for simplicity the same symbols for the original and dimensionless quantities, together

with the normalization ⟨ψ|ψ⟩ = 1, where α = −MNW0R
2/~2 > 0 and γ = (2/π)1/2Na/R.

Some numerical factors were calibrated so that α = γ represents a system where the local

and nonlocal influences have the same order of magnitude, as found from inspection of Eq.

(4) taking into into account
∫
exp(−r2/2)d3r = (2π)3/2.

The variational principle involves the action functional S[ψ, ψ∗] =
∫
Ldt d3r, where the

Lagrangian density is

L =
i

2
(ψ∗∂tψ−ψ∂tψ∗)−∇ψ∗ · ∇ψ

2
− (2π)3/2 γ|ψ|4

2
+
α|ψ|2

2

∫
exp

(
− |r− r′|2

2

)
|ψ(r′)|2d3r′ .

(5)

The functional derivative δS/δψ∗ = 0 gives Eq. (4), while δS/δψ = 0 provides the complex

conjugate of the GPE.

III. RADIALLY SYMMETRIC STATES

A reasonable radially symmetric Ansatz is given by the Gaussian form

ψ =
1

(
√
πσ)3/2

exp

(
− r2

2σ2
+ iβr2

)
, (6)

which is properly normalized, where σ = σ(t) (the width) and β = β(t) are time-dependent

variational functions to be determined. The function β is known as the chirp function [39]
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and is necessary to obtain meaningful differential equations at the end of the time-dependent

variational procedure. In the stationary case (∂/∂t = 0) one could chose β ≡ 0 from the

beginning. In a quantum fluid model (cf. Section V), the chirp gives a radial contribution

to the velocity field, defined via the gradient of the complex phase (action) of the wave

function.

Using Eq. (6) in Eq. (5) and integrating over space furnishes the Lagrangian L =
∫
L d3r,

which is evaluated as

L = −3

2
(β̇ + 2β2 +

1

2σ4
) σ2 − γ

2σ3
+

α

2(1 + σ2)3/2
. (7)

In passing, the integral of the nonlocal term was readily evaluated using the convolution

theorem combined with the spatial Fourier transform (Appendix A).

The Euler-Lagrange equation for β gives β = σ̇/(2σ), while ∂L/∂σ = 0 implies

σ̈ =
1

σ3
+

γ

σ4
− ασ

(1 + σ2)5/2
= −∂V

∂σ
, (8)

obtained after eliminating β. The pseudo-potential is

V = V (σ) =
1

2 σ2
+

γ

3 σ3
− α

3 (1 + σ2)3/2
. (9)

The contributions can be clearly identified, namely: the first (centrifugal) term in Eq.

(9) is related to the kinetic energy of the condensate and would be neglected in the Thomas-

Fermi approximation; the second term, proportional to γ, is due to the local, repulsive

coupling; the third term, proportional to α, is due to the nonlocal, attractive coupling. We

remark that in the case of an attractive contact interaction (γ < 0) the total potential would

be not bounded from below and no stable oscillations would be possible. This is due to the

dominant contribution of the contact interaction as σ → 0, as apparent in Eqs. (8) and (9).

The total potential is illustrated in Figure 1, where α = 20. Notice that increasing the

interaction ratio

η ≡ γ

α
=

g

(2π)3/2R3|W0|
(10)

decreases the depth of the potential well. Therefore a strong nonlocal attractive potential

leads to a more stably bound state, as expected.

In the general case, it is easy to find η < 1 as a necessary condition for obtaining stable

minima of V . Analytical results can be derived in specific cases. For very large σ ≫ 1,

Eq. (8) becomes σ̈ = σ−3 + (γ − α) σ−4, which has a stable fixed point σ = σ(0) = α − γ.
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FIG. 1: Total potential from Eq. (9), for α = 20 and different values of the interaction parameter

η = γ/α. Upper, continuous curve: η = 0.2; middle, dashed curve: η = 0.1; lower, dotted curve:

η = 0.0.

On the other hand, for σ ≪ 1, Eq. (8) becomes σ̈ + ασ = σ−3 + γ σ−4, which is a Pinney

equation [40] modified by an inverse quartic nonlinearity. In this situation, fixed points are

determined by ασ5 = γ+σ. If γ ≫ σ, then one would have σ(0) ≈ (γ/α)1/5 = η1/5, which is

consistently very small for a strong attractive nonlocal interaction. On the other hand, for

negligible local interaction and σ ≪ 1, one derives σ(0) ≈ α−1/4.

Figure 2 shows the location of the stable fixed point σ(0) numerically obtained, as a

function of the nonlocal interaction strength α, for a few choices of η. Notice that there is

a minimum α allowing for periodic oscillations of the characteristic length σ. For instance,

for η = 0 one needs α ≥ 3.5. Moreover, a smaller η corresponds to a smaller condensate

width, due to an enhanced attractive coupling. Figure 3 shows the corresponding angular

frequency ω of the linear oscillations, given by ω2 = (∂2V/∂σ2)σ=σ(0) . In particular, we note

a higher frequency for larger α and smaller η.

IV. NUMERICAL SIMULATIONS

We here present numerical results showing equilibrium solutions as well as small-

amplitude oscillations around the equilibrium for the Gaussian and van der Waals non-local

potentials. For the Gaussian interaction, the fully 3D GPE (4) is solved numerically, and
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FIG. 2: Minima of the potential V in Eq. (9), as a function of α and different values of the

interaction parameter η = γ/α. Upper, continuous curve: η = 0.2; middle, dashed curve: η = 0.1;

lower, dotted curve: η = 0.0.
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FIG. 3: Angular frequency ω of linear oscillations near the stable fixed point of Eq. (8), whenever

it exists, as a function of α and different values of the interaction parameter η = γ/α. Upper,

dotted curve: η = 0; mid, dashed curve: η = 0.1; lower, continuous curve: η = 0.2.

is compared with numerical solution of Eqs. (8) with the pseudo-potential given by Eq.

(9) as obtained via the variational approach. The non-local potential in Eq. (4) is in the

form of a convolution integral, which is calculated efficiently in Fourier space by means of

the convolution theorem, using the fast Fourier transform (FFT) algorithm to numerically

calculate the discrete Fourier transform and its inverse. A pseudo-spectral method is used
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to calculate the spatial derivatives. The pseudo-spectral method is very accurate as long as

the solution is well represented on the numerical grid. (Using Eq. (6), the width of the wave

function in the Fourier transformed space can be estimated to be approximately 1/σ, giving

a width of the order 1 – 2; as seen e.g. in Fig. 2 at large α. We are using a grid spacing

of ∆x = 5/16 giving the Nyqvist wavenumber π/∆x ≈ 10 which is much larger than the

spectral width and therefore the solution is resolved well on the numerical grid.) A standard

4th-order Runge-Kutta scheme is used to advance the solution in time.

Figures 4 and 5 show the steady-state solutions of the GPE and variational systems, as

well as the dynamics when the steady-state solutions are perturbed by 2%. The steady-state

of |ψ| is found by solving the GPE and by iteratively doing an averaging procedure ψnew =√
(|ψt=t1 |2 + |ψt=t2|2 + · · ·+ |ψt=tN |2)/N , which enforces the normalization ⟨ψ|ψ⟩ = 1. The

new solution ψnew is then used as a starting point for a new iteration, until |ψ| converges

to a time-stationary solution. The time difference tN − t1 is typically chosen to cover one

oscillation period of the system to efficiently damp out oscillations. Another averaging

scheme is used for the variational solution, σnew = (σt=t1 +σt=t2 + · · ·+σt=tN )/N , to find the

steady-state variational solution. As seen in the top and middle Figs. 4–5, the comparisons

between the 3D GPE solutions and the variational solutions are in general very good, with

only minor deviations from the Gaussian Ansatz. To compare the dynamics between the

two approaches, the steady-state solutions were perturbed in a manner that the magnitude

of ψ is initially 2% larger than the equilibrium solution at the origin x = y = z = 0. For the

variational approach this is straightforward by choosing a suitable initial condition for σ.

For the GPE the initial condition was set by a coordinate stretching procedure of the steady-

state solution, again enforcing ⟨ψ|ψ⟩ = 1 in the perturbed initial condition. Bottom panels

of Figs. 4–5 show the time-evolution of |ψ| at the origin. Apart from a small difference in the

steady-state solutions, the oscillation frequencies also agree to large degree, especially for

the lower values of η. For η = 0, one can also see oscillations with lower frequency in the 3D

GPE solution, seen first as a drift toward lower |ψ| and then toward larger |ψ|, indicating

that the total (local plus nonlocal) nonlinear potential of the deeply trapped condensate

allows multiple oscillation modes.

For comparison, we also carried out numerical simulations using a van der Waals-like

8



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

|ψ
|

Steady-state |ψ|, Gaussian interaction

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-0.06

-0.04

-0.02

0

0.02

0.04

|ψ
3D

| -
 |ψ

V
ar

ia
tio

na
l|

Difference between 3D GPE and variational solutions

Variational

η = 0, α = 20 3D GPE

0 1 2 3 4 5 6 7 8 9 10

t

0.98

1

1.02

1.04

1.06

1.08

1.1

|ψ
r=

0
|

Dynamics, Gaussian interaction

Variational
η = 0, α = 20

3D GPE

FIG. 4: Gaussian interaction with η = 0 and α = 20, showing the steady-state solution of |ψ| as a

function of x at y = z = 0 obtained from the 3D GPE and variational solutions (top panel), the

corresponding difference between the variational and 3D GPE solutions (middle panel), and the

small-amplitude oscillations when the equilibrium is initially perturbed by 2% (bottom panel). The

oscillations of the 3D GPE and variational solutions have a period of T3D = 1.2236 and TVariational =

1.1818, respectively, corresponding to angular frequencies of w3D = 5.1350 and wVariational = 5.3166,

with the variational frequency about 3.5% higher.

interaction [5, 24, 34],

W (r− r′) =
C̃6

R6 + |r− r′|6
, C̃6 < 0 (11)

where C̃6 can be related to a strong van der Waals force between Rydberg atoms, while R

corresponds to the saturation of the effective interaction, due to the van der Waals shift (see
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FIG. 5: Gaussian interaction with η = 0.2 and α = 20, showing the steady-state solution of

|ψ| as a function of x at y = z = 0 obtained from the 3D GPE and variational solutions (top

panel), the corresponding difference between the variational and 3D GPE solutions (middle panel),

and the small-amplitude oscillations when the equilibrium is initially perturbed by 2% (bottom

panel). The oscillations of the 3D GPE and variational solutions have a period of T3D = 3.2444

and TVariational = 3.0731, respectively, corresponding to angular frequencies of w3D = 1.9366 and

wVariational = 2.0446, with the variational frequency about 5.4% higher.

Ref. [5] for details).

The 3D GPE in normalized units is

i∂tψ =

(
−∇2

2
+

2π2

3
γ|ψ|2 − α

∫
|ψ(r′)|2d3r′

1 + |r− r′|6

)
ψ , (12)

where α = −MNC̃6/(~2R4) > 0 and γ = (6/π)Na/R. Moreover, α = γ corresponds to the
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FIG. 6: Van der Waals interaction with η = 0 and α = 30, showing the steady-state solution of

|ψ| as a function of x at y = z = 0 obtained from the 3D GPE and variational solutions (top

panel), the corresponding difference between the variational and 3D GPE solutions (middle panel),

and the small-amplitude oscillations when the equilibrium is initially perturbed by 2% (bottom

panel). The oscillations of the 3D GPE and variational solutions have a period of T3D = 0.5950

and TVariational = 0.5794, respectively, corresponding to angular frequencies of w3D = 10.5600 and

wVariational = 10.8443, with the variational frequency about 2.7% higher.

same order of magnitude of the contact and nonlocal couplings, since
∫
(1+r6)−1d3r = 2π2/3.

The variational solution is based on the radially symmetric Ansatz in Eq. (6). Proceeding

in a similar manner as in Section II yields the Lagrangian

L = −3

2
(β̇ + 2β2 +

1

2σ4
)σ2 −

√
π

2

γ

6 σ3
− 3U(σ)

2
, (13)
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FIG. 7: Van der Waals interaction with η = 0.15 and α = 30, showing the steady-state solution

of |ψ| as a function of x at y = z = 0 obtained from the 3D GPE and variational solutions (top

panel), the corresponding difference between the variational and 3D GPE solutions (middle panel),

and the small-amplitude oscillations when the equilibrium is initially perturbed by 2% (bottom

panel). The oscillations of the 3D GPE and variational solutions have a period of T3D = 1.2265

and TVariational = 1.1480, respectively, corresponding to angular frequencies of w3D = 5.1229 and

wVariational = 5.4732, with the variational frequency about 6.6% higher.

so that β = σ̇/(2σ) and

σ̈ =
1

σ3
+

√
π

2

γ

3σ4
− ∂U

∂σ
, (14)
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in terms of the nonlocal interaction potential

U(σ) = −α
3

∫
|ψ(r′)|2|ψ(r)|2d3rd3r′

1 + |r− r′|6
. (15)

An attractive contact interaction (γ < 0) would prevent stable nonlinear oscillations, due

to the dominant role of the σ−4 term in Eq. (14) when σ approaches zero. While U(σ) can

be expressed in terms of hypergeometric functions [5], a numerically amenable form of the

nonlocal interaction potential is also (cf. Appendix B)

U(σ) = −α
9

∫ ∞

0

exp
(
−k

2σ2

2
− k

)[
1 + exp

(k
2

)(√
3 sin

(k√3

2

)
− cos

(k√3

2

))]
kdk . (16)

The numerical results for the van der Waals-like nonlocal interaction are presented in

Figs. 6 and 7. The GPE and variational steady-state solutions show excellent agreement

for η = 0 and α = 30 in Fig. 6, and also good comparison for η = 0.15 as seen in Fig. 7.

Also the dynamics show oscillation periods with high degree of agreements between the 3D

GPE and variational solutions. Similar as for the Gaussian nonlocal interaction potential,

one can also see a lower frequency oscillation in the 3D GPE solution for the case η = 0,

indicating that the deeply trapped condensate has a more rich dynamics with more than

one trapped oscillatory mode.

A set of simulations, similar to the ones in Figs. 4–7, were carried out for a range of

different η and α to produce phase maps shown in Figs. 8 and 9 for the Van der Waals

interaction, respectively, showing the central amplitude of ψ and the oscillation frequency

for the variational and 3D GPE models. In general the agreement between the variational

and 3D GPE solutions are good, with a typical deviation of about 5% or less.

V. SPECTRUM OF ELEMENTARY EXCITATIONS

At this point and below it is more transparent to again employ physical variables. As

a complementary study besides the search for localized nonlinear solutions, it is interesting

to look for the linear wave spectrum around homogeneous equilibria of the GPE (1). This

could be obtained using the Bogoliubov method [38]. Here we use an alternative method by

employing the Madelung transformation [41]

ψ =
√
n exp(iS/~) , (17)
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FIG. 8: Gaussian interaction, showing phase maps in the (α, η) parameter plane of the central

amplitude of ψ in a) the variational model, b) the 3D GPE model, and c) contour map of the differ-

ence between the variational and 3D GPE solutions. Corresponding phase maps of the oscillation

frequencies of the central amplitudes of ψ in d) the variational model, e) the 3D GPE model, and

d) their difference. The shaded region at small α indicate parameters for which no steady-state

solutions are found.

where n = n(r, t) is the condensate number density and the action S = S(r, t) is related to

the condensate velocity field v = ∇S/M , where both n and S are real quantities. Separating

the real and imaginary parts of the GPE yields the continuity equation

∂tn+∇ · (nv) = 0 (18)

and the momentum transport equation

∂tv + v · ∇v = − g

M
∇n− 1

M
∇

∫
W (r− r′)n(r′) d3r′ +

~2

2M2
∇
(
∇2

√
n√
n

)
= − g

M
∇n− 1

M

∫
W (r− r′)∇′n(r′) d3r′ +

~2

2M2
∇

(
∇2

√
n√
n

)
, (19)

where∇′ = ∂/∂r′ and where in the last step an integration by parts was performed, assuming

the nonlocal interaction to vanish at infinity.

Assuming

n = n0 + δn , v = δv , (20)
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FIG. 9: Van der Waals interaction, showing phase maps in the (α, η) parameter plane of the

central amplitude of ψ in a) the variational model, b) the 3D GPE model, and c) contour map of

the difference between the variational and 3D GPE solutions. Corresponding phase maps of the

oscillation frequencies of the central amplitudes of ψ in d) the variational model, e) the 3D GPE

model, and d) their difference. The shaded region at small α indicate parameters for which no

steady-state solutions are found.

where n0 is a uniform equilibrium number density and δn and δv are small, first-order

perturbations. Linearizing the system and letting the first-order perturbations be plane

wave solutions proportional to exp[i(k · r− Ω t)], the result is the dispersion relation

Ω2 =
n0 k

2

M
(g + Fk[W ]) +

~2 k4

4M2
, (21)

in agreement with [33], where Fk[W ] =
∫
W (r) exp(−ik · r) d3r denotes the Fourier trans-

form of the nonlocal interaction. In the absence of W or for short wavelengths one regains

the Bogoliubov spectrum.

A. Gaussian kernel

The hydrodynamic equations (18)-(19) and the linear dispersion relation (21) are valid

irrespective of the form of the nonlocal interaction. In the case of the model (2), the result
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from Eq. (21) is

Ω2 =
n0 k

2

M

(
g + (2π)3/2W0R

3 exp(−k2R2/2)
)
+

~2 k4

4M2
, (22)

or, alternatively,

Ω2 = c2s k
2

(
1− exp(−k2R2/2)

η

)
+

~2 k4

4M2
, (23)

where cs =
√
g n0/M is the usual sound speed.

Expanding for long wavelengths, one finds

Ω2 =

(
1− 1

η

)
c2s k

2 +

(
1 +

2M2 c2s R
2

η ~2

)
~2 k4

4M2
+O

(
(k R)6

)
, (24)

which shows in a conclusive way an instability (Ω2 < 0) of long wavelengths ((k R)2 ≪ 1),

provided η < 1. In conclusion, a strong attractive nonlocal interaction destabilizes homoge-

neous equilibria but allows the existence of stable nonlinear, self-trapped wave packets.

In terms of dimensionless variables Ω̄ = Ω τ and k̄ = k R, the wave spectrum is

Ω̄2 =
(2π)3/2 αn0R

3 k̄2

N

(
η − exp(−k̄2/2)

)
+
k̄4

4
, (25)

which is shown in Fig. 10. It can be seen that a larger η reduces the unstable (Ω̄2 < 0)

region in wavenumber space.

B. Van der Waals-like kernel

The Fourier transform of the kernel shown in Eq. (11) is

Fk[W ] =
2π2C̃6

3R3
ϕ(kR) ,

ϕ(kR) ≡ exp(−kR)
kR

(
1 +

√
3 exp(kR/2) sin(

√
3kR/2)− exp(kR/2) cos(

√
3kR/2)

)
= 1− (kR)2

3
+O

(
(k R)4

)
, (26)

yielding the long wavelength dispersion relation

Ω2 =

(
1− 1

η

)
c2s k

2 +

(
1 +

4M2 c2s R
2

3η ~2

)
~2 k4

4M2
+O

(
(k R)6

)
, (27)

where now

η =
γ

α
=

3R3g

2π2|C̃6|
. (28)
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FIG. 10: Dimensionless dispersion relation for the Gaussian kernel, from Eq. (25), with

(2π)3/2αn0R
3/N = 1 and η = 0.1 (continuous line), η = 0.3 (dashed line).

Comparing Eqs. (24) and (27), we conclude that the long wavelength dispersion relations

for the two different kernels are basically the same, up a small discrepancy of order unity

in the ∼ k4 term, provided the coupling parameter η is correctly identified and the same

characteristic length R is used.

In terms of dimensionless variables Ω̄ = Ω τ and k̄ = k R, the wave spectrum is

Ω̄2 =
2π2 αn0R

3 k̄2

3N

(
η − ϕ(k̄)

)
+
k̄4

4
, (29)

which is shown in Figure 11, with similar results as for the Gaussian kernel in Figure 10.

VI. CONCLUSIONS

In this work, the nonlinear dynamics of a completely self-bound (without external con-

finement) Bose-Einstein condensate with nonlocal coupling has been analyzed by means of

a time-dependent variational formalism. For definiteness, the nonlocal and contact interac-

tions were assumed to be respectively attractive and repulsive, but the proposed method can

be easily adapted to alternative situations. It is found that the problem is always reducible

to a nonlinear oscillator with a linearly stable equilibrium, whose location and breather fre-

quency can be determined in great detail, specially for a nonlocal Gaussian-shaped kernel,
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FIG. 11: Dimensionless dispersion relation for the van der Waals interaction, from Eq. (29), with

2π2αn0R
3/(3N) = 1 and η = 0.1 (continuous line), η = 0.3 (dashed line).

which is more amenable to analytical calculations. A van der Waals-like interaction was

also considered, which can be related to an attractive effective force in mesoscopic atom

clouds due to off-resonant dressing to Rydberg nD states [5]. We have made a comparison

between the approximate, variational solutions and the output from the direct simulation of

the nonlocal GPE. As a complement to the nonlinear analysis, the linear spectrum of spatio-

temporal waves was also addressed and shown to be determined by the Fourier transform of

the nonlocal potential. In this context, the Gaussian and van der Waals-like couplings were

shown to yield essentially similar dispersion relations. The present results provide insight

for the engineering of self-trapped matter waves. Topics to be addressed in future works

include the analysis of the existence and stability of BECs with non-radial, rotational states,

twisted phonons carrying a finite angular momentum [42], vortex-phonon interactions [43]

and twisted nonlinear waves [44], in BECs with long-range interactions.
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APPENDIX A: EVALUATION OF LAGRANGIAN FUNCTION (7)

The Lagrangian shown in Eq. (7) can be obtained from Eqs. (5) and (6) in a straightfor-

ward way with the exception of the term associated with the nonlocal interaction. This one

can be obtained by brute force integration using e.g. Cartesian coordinates and evaluating

the several integrals over Gaussian functions or by a more gentle approach considering the

convolution theorem, as follows. Let the functions

n(r) = |ψ(r)|2 , K(r) = exp(−r2/2) (A1)

and their convolution

(K ∗ n)r =
∫
K(r− r′)n(r′)d3r′ = F−1[F (K)F (n)] , (A2)

where the last equality is due to the convolution theorem, in terms of

F (f) = f̂(k) =

∫
f(r)e−ik·rd3r , (A3)

which is the Fourier transform of a generic function f(r) with

F−1(f̂) = f(r) =
1

(2π)3

∫
f̂(k)eik·rd3k (A4)

denoting its inverse. Considering the Gaussian trial wave function in Eq. (6), we obtain

(K ∗ n)r =
1

(1 + σ2/2)3/2
exp

[
− r2

2(1 + σ2/2)

]
(A5)

and then ∫
(K ∗ n)rn(r)d3r = (1 + σ2)−3/2 , (A6)

which yields the Lagrangian in Eq. (7).

APPENDIX B: EVALUATION OF PSEUDO-POTENTIAL (16)

The pseudo-potential shown in Eq. (16) can be obtained from Eq. (15) by applying the

convolution theorem and Parseval’s formula, as follows. Let the functions

n(r) = |ψ(r)|2 , K(r) =
1

1 + r6
(B1)
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Then Eq. (15) can be written

U(σ) = −α
3

∫
n(r)(K ∗ n)rd3r (B2)

in terms of the convolution product

(K ∗ n)r =
∫
K(r− r′)n(r′)d3r′ = F−1[F (K)F (n)] , (B3)

where the last equality is due to the convolution theorem, in terms of the Fourier transform

pair

F (f) = f̂(k) =

∫
f(r)e−ik·rd3r , (B4)

F−1(f̂) = f(r) =
1

(2π)3

∫
f̂(k)eik·rd3k . (B5)

It should be noted that both n(r) and K(r) and their Fourier transforms n̂(k) and K̂(k)

are spherically symmetric, real-valued functions that only depend on the modulus of their

arguments. Planckerel’s (Parseval’s) formula∫
fg d3r =

1

(2π)3

∫
f̂(k)ĝ(k)d3k =

4π

(2π)3

∫ ∞

k=0

f̂(k)ĝ(k)k2dk , (B6)

where spherical coordinates were introduced in the last step, is then applied to Eq. (B2) to

give

U(σ) = − 4πα

3(2π)3

∫ ∞

k=0

n̂(k)2K̂(k)k2dk (B7)

where

n̂(k) = exp(−k2σ2/4) (B8)

and

K̂(k) =
2π2

3k
exp(−k)

[
1 + exp

(
k

2

)(√
3 sin

(
k
√
3

2

)
− cos

(
k
√
3

2

))]
. (B9)

Using Eqs. (B8) and (B9) in Eq. (B7) yields the pseudo-potential in Eq. (16).
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Rev. X 6, 041039 (2016).

[14] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, Nature

530, 194 (2016).

[15] S. Skupin, M. Saffman, and W. Krolikowski, Phys. Rev. Lett. 98, 263902 (2007).

[16] A. V. Mamaev, M. Saffman, D. Z. Anderson, and A. A. Zozulya, Phys. Rev. A 54, 870 (1996).

[17] W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, Phys. Rev. E 64, 016612 (2001).

[18] O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, Phys. Rev. E 66, 046619 (2002).

[19] T. Bland, M. J. Edmonds, N. P. Proukakis, A. M. Martin, D. H. J. O’Dell, and N. G. Parker,

Phys. Rev. A 92, 063601 (2015).

[20] M. J. Edmonds, T. Bland, D. H. J. O’Dell, and N. G. Parker, Phys. Rev. A 93, 063617 (2016).
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