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Abstract

A non-neutral plasma is confined in a quasi-1D device and described by a fluid model. The use

of the Lagrangian variables method together with a certain Ansatz for the velocity field reduces

the problem essentially to ordinary differential equations satisfied by a scale function. In the

case of thermal dominated plasma, the governing equation is the Pinney equation, having a close

connection with the time-dependent harmonic oscillator. For a slowly varying frequency of the

trap potential, an approximate solution is derived and shown to be accurate in the adiabatic limit.

In the case of negligible thermal effects, the resulting non-homogeneous time-dependent oscillator

equation for the scale function is also approximately solved, in the adiabatic limit. The validity

conditions of the thermal dominated and Coulomb dominated cases are determined. The results

are applied to a confined antiproton plasma, with implication on antimatter atoms experiments.
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I. INTRODUCTION

The analysis of exact or approximate nonlinear structures in plasmas is a traditional an

honorable research field [1]-[3]. Recent developments include the influence of large ampli-

tude electromagnetic waves on electron plasma waves [4], the nonlinear dynamics of cold

magnetized non-relativistic plasma in the presence of electron-ion collisions [5], nonlinear

structures in a degenerate one-dimensional electron gas [6], nonlinear waves in twirling plas-

mas [7], temperature effects on large amplitude electron oscillation [8], nonlinear standing

waves in bounded plasmas [9], nonlinear surface waves on a plasma sphere [10], the dynamics

of strongly nonlinear electrostatic waves in warm plasma [11] and nonlinear isothermal waves

in degenerate plasma [12]. In the present work, we consider a non-relativistic non-neutral

plasma confined in an one-dimensional trap. The method of Lagrangian variables [1]-[3] is

applied, since it provides a systematic approach free of ad hoc assumptions, at least as much

as possible.

The primary motivation of the work is the relevance of quasi-1D confined non-neutral

plasmas for antimatter experiments. Namely, the creation of antihydrogen, composed of an

antiproton and a positron, has necessarily an initial stage where antiprotons are confined

in a potential well, which is only possible for low temperature of the order of a few kelvins

[13]-[16]. These low temperatures of the antiproton gas can be achieved most efficiently

by means of adiabatic cooling, where the external harmonic trap has a frequency slowly

increasing with time, after the antiprotons have been pre-cooled collisionally by electrons.

However, our methods apply to general non-neutral plasmas confined in 1D structures such

as Penning-Malmberg devices. In such traps, a strong external magnetic field provides the

radial confinement and hyperbolic electrodes create in the center an harmonic force that

confines axially. In addition, we consider also hot trapped non-neutral plasmas, for the sake

of generality.

This work is organized as follows. In Section II, the model fluid equations are presented

and written in terms of Lagrangian variables. For a suitable equation of state and velocity

field, the thermal dominated case is analyzed in Section III. In this case the main concern

is the solution of the nonlinear ordinary differential equation known as Pinney’s equation,

which is described in Section IV for the case of a slowly varying external trap frequency.

In Section V, the situation where thermal effects is dominant is discussed and reduced to
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an inhomogeneous time-dependent oscillator equation, which is approximately solved in the

adiabatic limit. The solution is applied to the case of the cooling of an antiproton gas

to temperatures near the absolute zero. Section V contains the conclusions. Finally, in

Appendix A we describe the exact solution of the Pinney equation for a certain class of

external trap frequencies, in terms of Bessel functions.

II. BASIC MODEL AND LAGRANGIAN VARIABLES METHOD

The hydrodynamic equations for the non-neutral plasma trapped in a one-dimensional

well are

∂n

∂t
+

∂

∂z
(nv) = 0 , (1)

∂v

∂t
+ v

∂v

∂z
= − 1

mn

∂p

∂z
− ω2(t)z − eE

m
, (2)

∂E

∂z
= −eσ⊥n

ε0
(3)

where n is the 1D number density along the z axis, v is the fluid velocity, E is the electric

field, m,−e are resp. the ions (e.g. antiprotons) mass and charge, σ⊥ is the 2D number

density in the perpendicular plane, and ε0 is the vacuum permittivity. Systems of antiprotons

tend to be dilute and hence the collision frequency is low in such weakly coupled plasmas.

Therefore, the entropy is nearly constant, so that an adiabatic equation of state is indicated.

To avoid a choice of equation of state, one could extend the macroscopic analysis taking into

account the time-evolution of the higher order moment (the pressure dyad) of the particle

distribution function, or directly employ kinetic methods [13]. In both cases the treatment

would be more involved. In the present case,

p = n0κBT0

(
n

n0

)3

(4)

is the isentropic equation of state with adiabatic index γ = (d+2)/d = 3 for dimensionality

d = 1, where n0, T0 are a reference number density and a reference temperature (κB is the

Boltzmann constant). Finally, with the motivation of the adiabatic ion cooling, following

[13] we adopt a time-dependent trap frequency

ω(t) =
ω0

(1 + Ωt)β
, (5)
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where ω0,Ω and β are positive constants. For slowly varying frequency one has |ω̇|/ω ≪ ω,

or βΩ ≪ ω0(1 + Ωt)1−β, which holds [13] for all times t ≥ 0 provided β ≤ 1 and βΩ ≪ ω0.

Notice that collisional effects are not included in the model equations, since a very collisional

plasma would not keep its quasi-1D character for a long time.

The Lagrangian variables ξ, τ are given [1]-[3] by

ξ = z −
∫ τ

0

v(ξ, τ ′) dτ ′ , τ = t , (6)

so that
∂

∂τ
=

∂

∂t
+ v

∂

∂z
,

∂

∂ξ
=

(
1 +

∫ τ

0

∂v(ξ, τ ′)

∂ξ
dτ ′
)

∂

∂z
. (7)

The continuity equation (1) becomes

∂

∂τ

[(
1 +

∫ τ

0

∂v(ξ, τ ′)

∂ξ
dτ ′
)

n

]
= 0 , (8)

with solution

n = n(ξ, 0)

(
1 +

∫ τ

0

∂v(ξ, τ ′)

∂ξ
dτ ′
)−1

, (9)

where n(ξ, 0) is the initial 1D number density.

The Gauss law (3) becomes
∂E

∂ξ
= −eσ⊥

ε0
n(ξ, 0) , (10)

with solution

E = −eσ⊥

ε0

∫ ξ

0

n(ξ′, 0) dξ′ + E0(τ) . (11)

where E0(τ) is the electric field at ξ = 0.

Finally, the momentum equation (2) becomes

∂v

∂τ
= − 3κBT0

2m

(
1 +

∫ τ

0

∂v(ξ, τ ′)

∂ξ
dτ ′
)−1 ∂

∂ξ

[( n

n0

)2]
− ω2(τ)

(
ξ +

∫ τ

0

v(ξ, τ ′) dτ ′
)
+

ω2
p

n0

∫ ξ

0

n(ξ′, 0)dξ′ − eE0(τ)

m
, (12)

where ωp =
√

n0σ⊥e2/(mε0).

As it stands, Eq. (12) is a difficult integro-differential equation. To proceed, we suppose

the special form

v = Ż(τ) + ρ̇(τ)ξ , (13)
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where for definiteness and without loss of generality Z(0) = 0 and ρ(0) = 1, so that in

particular n = n(ξ, 0)/ρ. Equation (13) can be regarded as a first order expansion of the

velocity field around ξ = 0. Equation (12) becomes

Z̈ + ω2Z +
eE0

m
+ (ρ̈+ ω2ρ)ξ = − 3 kBT0

2mρ3
∂

∂ξ

[(n(ξ, 0)
n0

)2]
+

ω2
p

n0

∫ ξ

0

n(ξ′, 0)dξ′ . (14)

The left-hand side of Eq. (14), being a linear function of ξ, must be paired by the right-hand

side, which can happens only under certain circumstances discussed in what follows.

III. LOW DENSITY PLASMAS

For sufficiently low densities, the self-consistent Coulomb interaction ∼ ω2
p can be ne-

glected in Eq. (14). This imposes a specific initial number density so that the temperature

term behaves linearly in ξ,

n(ξ, 0) = n0

(
1−

(
ξ

ξ0

)2
)1/2

, (15)

where ξ0 > 0 is a constant, and where n(ξ, 0) = 0 outside the interval −ξ0 < ξ < ξ0.

Equation (14) splits into

ρ̈+ ω2ρ =
κ2

ρ3
, κ2 =

3κBT0

mξ20
> 0 , (16)

and

Z̈ + ω2Z = − eE0

m
, (17)

making sense inside the plasma. The concavity of the quadratic form in Eq. (15) was chosen

so that κ2 > 0 assuring ρ > 0 for all times, avoiding any singular expressions. Also notice

that n0 is the maximal initial 1D number density, attained by definition and without loss

of generality due to a choice of reference system at ξ = 0, as depicted in Fig. 1. Equations

(16) and (17) are quite similar to Eqs. (16) and (17) of [17], also derived using a Lagrangian

frame for oscillation modes of thin oblate non-neutral plasmas. The differences are that Eq.

(16) above does not contain a Coulomb term due to the low density assumption, and has a

time-dependent harmonic trap frequency.
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FIG. 1: Initial 1D number density from Eq. (15).

It is convenient to collect all results obtained so far within the plasma ((ξ/ξ0)
2 < 1):

n =
n(ξ, 0)

ρ
, v = Ż + ρ̇ξ , ξ =

z − Z

ρ
,

E = − n0eσ⊥ξ0
2ε0

 ξ

ξ0

(
1−

(
ξ

ξ0

)2
)1/2

+ arcsin−1

(
ξ

ξ0

)+ E0 , (18)

where n(ξ, 0) is given by Eq. (15) and where ρ and Z satisfy resp. Eqs. (16) and (17). We

are also able to exactly derive the number of confined particles,

N = σ⊥A⊥

∫ ξ0

−ξ0

n(ξ, 0)dξ =
π

2
σ⊥A⊥n0ξ0 . (19)

where A⊥ is the occupied area in the perpendicular plane, and the instantaneous temperature

T ∼ nγ−1,

T = T0(n/n0)
2 =

T0

ρ2

(
1−

(
ξ

ξ0

)2
)

. (20)

In physical coordinates, the nonlinear structure is centered at z = Z(t), where the center of

mass Z(t) executes driven oscillations according to Eq. (17).

In addition, the condition for neglecting space charge effects can be analytically found.

Assuming E0 = 0, the thermal effects are dominating over the Coulomb term in Eq. (14)

provided

2κ2

ω2
pρ

3
≫ f

(
ξ

ξ0

)
=

(
1−

(
ξ

ξ0

)2
)1/2

+
arcsin(ξ/ξ0)

ξ/ξ0
≥ π/2 , −ξ0 ≤ ξ ≤ ξ0 , (21)
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which can be checked against experimental conditions. Notice that since ρ tends to increase,

the neglect of electrostatic effects becomes less justifiable as time goes on. Namely, as time

increases, both thermal and electrostatic contributions become smaller, but at different rates

so that eventually the thermal effects become negligible due to the cooling. As expected,

space charge effects are enhanced at the center of the structure, as shown in Fig. (2).

FIG. 2: Function f = f(ξ/ξ0) characteristic of the space charge effects, from Eq. (21).

The details of the exact solution are strongly dependent on the properties of the function

ρ satisfying Eq. (16), known as Pinney equation [18], discussed in the next Section.

IV. EXACT AND APPROXIMATE SOLUTIONS OF THE PINNEY EQUATION

The Pinney equation (16) appears in many contexts such as cosmology [19, 20], magne-

togasdynamics [21], Bose-Einstein condensates [22], dissipative quantum mechanics models

[23], Hamiltonian Ermakov systems [24], limit cycles analysis [25] and Kepler-Ermakov sys-

tems in Riemannian spaces [26]. The solution [18] reads

ρ = (Ax2
1 + 2Bx1x2 + Cx2

2)
1/2 , (22)

where x1,2 are independent solutions of the time-dependent harmonic oscillator equation,

ẍ+ ω2(t)x = 0 , (23)

and where A,B,C are constants such that AC−B2 = κ2/W 2, with W = x1ẋ2−x2ẋ1 being

the Wronskian.

7



In the case of the frequency (5), Eq. (23) is reducible to the Bessel equation, so that the

Pinney equation is exactly solvable. Details are shown in the Appendix.

However, although presently the Pinney equation is exactly solvable, the general solution

in terms of Bessel functions is a little too involved. Moreover, it is certainly of interest to have

available approximate solutions, for the case where the solution of the time-dependent har-

monic oscillator equation (23) is unknown. Supposing an arbitrary slowly varying frequency

so that ω̇/ω2 ∼ ε ≪ 1, it is admissible to employ the WKB (Wentzel-Kramers-Brillouin)

solutions

x1 =
cos T√
ω(t)

, x2 =
sin T√
ω(t)

, T =

∫ t

0

ω(t′)dt′ , (24)

to be inserted into Eq. (22). In this context the Wronskian is W = 1 and

ρ =
1√
ω

(
A cos2 T + 2B sin T cos T + C sin2 T

)1/2
, AC −B2 = κ2 . (25)

Direct evaluation shows that (25) yields

1

ρ4ω2

(
ρ3(ρ̈+ ω2ρ)− κ2

)
=

1

4ω4
(3ω̇2 − 2ωω̈) = O(ε2) , (26)

showing the adiabatic validity of the proposed expression. As far as we know, in spite of

the long history of the Pinney equation and the associated invariant [27], the WKB solution

(25) is new and potentially useful whenever the frequency is slowly varying in time. For the

initial condition ρ(0) = 1, ρ̇(0) = 0, one has from Eq. (25) the net result

ρ =
1

√
ω0ω

[(
ω0 cos T +

ω̇0

2ω0

sin T
)2

+ κ2 sin2 T

]1/2
, (27)

where ω0 = ω(0) and ω̇0 = ω̇(0), valid for arbitrary slowly varying trap frequency.

It is interesting to note that in addition to the oscillations the solution remains in a sense

locked at the minimum ρ∗ =
√

κ/ω(t) of the pseudo-potential V = V (ρ) = ω2ρ2/2+κ2/(2ρ2)

so that ρ̈ = −∂V/∂ρ.

The condition (21) for dominance of thermal effects can be satisfied in available conceptual

experimental setups [28, 29]. The corresponding solution (27) is shown in Figure 3, for

typical parameters: κBT0 = 30 eV and ξ0 = 1 cm, which for an antiproton gas yields κ/2π =

1.5×106Hz. Supposing N = 104 confined antiprotons with a circular cross section of radius

2mm, from Eq. (19) one derives a number density n0σ⊥ = 5.1× 1010m−3 so that ωp/2π =

4.7 × 104Hz. In addition, the trap frequency (5) is considered, with β = 1,Ω = 0.02ω0
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and ω0/2π = 100 kHz. Actually, as the plasma expands due to the lowering trap frequency,

the electrostatic effects become smaller in a slower rate as the thermal effects, so that the

inequality (21) is attended in a less accurate way due to the overall increase of the scale

function ρ. It should also be noted that the exact solution (for brevity not shown) in terms

of Bessel functions yields almost the same results.

FIG. 3: WKB solution (27) of the Pinney equation, with ω(t) defined in Eq. (5). Initial conditions:

ρ(0) = 1, ρ̇(0) = 0. Parameters: κ/2π = 4.7 × 106Hz, β = 1,Ω = 0.02ω0 and ω0/2π = 100 kHz.

The monotonous curve shows ρ∗ defined in the text.

Similarly, one can also track the time-evolution of the temperature, among other possi-

bilities. Using Eq. (20), the temperature at the center of the structure (ξ = 0) is shown in

Figure 4, using the WKB solution and the same parameters as for Figure 3.
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FIG. 4: Temperature T (ξ = 0) = T0/ρ
2 at the center, measured in energy units, for κBT0 = 30 eV,

using the WKB solution (27) and the same remaining parameters of Figure 3.

V. NEGLIGIBLE THERMAL EFFECTS

If the thermal contribution ∼ T0 is neglected in Eq. (14), the only possibility is

n(ξ, 0) = n0 , −ξ0 < ξ < ξ0 , (28)

a constant and symmetric (due to a choice of reference system) distribution, so that the

pressure term identically vanishes. The center of mass still satisfies Eq. (17), together with

ρ̈+ ω2ρ = ω2
p , (29)

valid inside the plasma.

Within the plasma ((ξ/ξ0)
2 < 1), we have the following results:

n =
n0

ρ
, v = Ż + ρ̇ξ , ξ =

z − Z

ρ
,

E = −n0eσ⊥ξ/ε0 + E0 , (30)

N = 2σ⊥A⊥n0ξ0 , T = T0/ρ
2 ,

with spatially homogeneous density and temperature.

From now on for simplicity we assume E0 = 0, Z = 0. In this case the main concern

is the solution of Eq. (29). Using the transformation described in Appendix A, when the

trap frequency is given by Eq. (5) it can be mapped to an inhomogeneous Bessel equation,

10



whenever β ̸= 1. The exact solution is therefore available but a little too involved, which

is also true in the case β = 1. For a slowly varying trap frequency, it is more useful to

consider the WKB solutions of the homogeneous equation shown in the previous Section,

together with the variation of parameters method. Following this approach, one gets for

ρ(0) = 1, ρ̇(0) = 0 the approximate solution

ρ =

√
ω0

ω(t)

(
cos T (t) +

ω̇0

2ω2
0

sin T (t) + (31)

+
ω2
p√
ω0

sin T (t)

∫ t

0

cos T (t′)dt′√
ω(t′)

−
ω2
p√
ω0

cos T (t)

∫ t

0

sin T (t′)dt′√
ω(t′)

)
, T (t) =

∫ t

0

ω(t′)dt′ ,

which is valid for arbitrary frequency, with ω0 = ω(0), ω̇0 = ω̇(0). We easily obtain

ρ̈+ ω2ρ− ω2
p

ω2ρ
=

1

4ω4
(3ω̇2 − 2ωω̈) = O(ε2) , (32)

showing the adiabatic validity of the solution provided ω̇/ω2 = O(ε), ε ≪ 1.

According to Eq. (14), the neglect of thermal effects is justified provided

3κBT0

mρ3
∂n(ξ, 0)

∂ξ
≪ n0ω

2
pξ (33)

inside the plasma. It is not entirely straightforward to deal with the inequality (33), due to

the discontinuous derivative of the initial number density. However, far from the frontiers

the inequality is automatically satisfied, due to the flat character of n(ξ, 0). This holds true

also at ξ = 0, where both thermal and electrostatic effects are negligible. On the other hand,

near the frontier (ξ ≃ ξ0) if one assumes the estimate ∂n(ξ, 0)/∂ξ ≃ n0/ξ0, similar to the

case of negligible electrostatic effect, we then have from Eq. (33),

κ2

ρ3
≪ ω2

p , (34)

where κ is defined in Eq. (16). Notice that since ρ tends to increase, it is sufficient to attend

Eq. (34) at t = 0, implying κ2 ≪ ω2
p. This is due to different scaling of temperature and

number density, T ∼ ρ−2, n ∼ ρ−1, so that thermal effects become smaller in a fastest rate.

The condition (34) is safely satisfied in the experiments reported in [14], where N =

5 × 105 antiprotons were confined in a cylindrical trap with A⊥ = 12.5mm2 and length

2ξ0 = 10mm, with initial temperature T0 = 31K, together with ρ ≃ 1 (which holds at

least in the initial stages of the expansion). In this case one has κ/2π = 2.8 × 104Hz

and ωp/2π = 4.7 × 105Hz. In addition, we can consider the trap frequency (5), with
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β = 1,Ω = 0.02ω0 and ω0/2π = 100 kHz. The time-evolution of the scaling function ρ

can be analytically found from Eq. (31), as shown in Figure 5. Similarly, the cooling is

represented in Figure 6. It is interesting to note that in addition to the oscillations the

solution remains in a sense locked at the minimum ρ∗ = ω2
p/ω

2(t) of the pseudo-potential

V = V (ρ) = ω2ρ2/2− ω2
pρ so that ρ̈ = −∂V/∂ρ.

FIG. 5: Time-evolution of the scaling function ρ, according to the approximate solution (31), with

ω(t) defined in Eq. (5). Initial conditions: ρ(0) = 1, ρ̇(0) = 0. Parameters: ωp/2π = 4.7× 105Hz,

β = 1,Ω = 0.02ω0 and ω0/2π = 100 kHz. The monotonous curve represents ρ∗ defined in the text.

FIG. 6: Temperature T = T0/ρ
2, for T0 = 31K, using the approximate solution (31) and the same

remaining parameters of Figure 5.
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Finally, one can wonder about the situation where thermal and electrostatic effects are

both relevant. This case is not accessible to the present methods, due to the following

reasoning. Multiplying all terms in Eq. (14) by ρ3, deriving twice with respect to ξ and

once with respect to τ gives ω2
p × d(ρ3)/dτ ×∂n(ξ, 0)/∂ξ = 0. Since ρ is not a constant, this

condition can be meet in only two cases: (a) setting ωp ≃ 0, which corresponds to negligible

electrostatic effects; (b) setting ∂n(ξ, 0)/∂ξ ≃ 0 inside the plasma, which was followed in

the Section on negligible thermal effects.

VI. CONCLUSION

In this work, we have derived nonlinear structures for trapped quasi-1D non-neutral plas-

mas, by means of the Lagrangian variables method. The findings are relevant for the exper-

imental creation of antimatter atoms, such as antihydrogen, which involves the confinement

of antiprotons as an initial step. For this purpose, we have considered a time-dependent

harmonic trap, with a slowly decreasing frequency, which provides the adiabatic cooling of

the trapped non-neutral plasma. In the dilute plasma case, the details of the nonlinear

structure reduce to the solution of the so-called Pinney equation, which is ubiquitous in

nonlinear studies. The solution of the Pinney equation valid in the adiabatic limit of slowly

varying general trap frequencies was obtained for the first time. In addition, the exact solu-

tion of the Pinney equation for a certain class of external traps was also provided, in terms

of Bessel functions. The case of Coulomb dominated systems is reducible to an inhomoge-

neous time-dependent harmonic oscillator equation, which was solved in the adiabatic limit

of slowly varying frequencies. The conditions for the dominance of thermal or electrostatic

effects were determined and compared to standard experimental parameters. The results

will be relevant for trapped non-neutral plasmas under time varying harmonic potentials.

In addition, the approximate solution of the Pinney equation in adiabatic conditions has an

intrinsic impact on its own.
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APPENDIX A: EXACT SOLUTION OF THE PINNEY EQUATION

The general solution (22) of the Pinney equation crucially depends on the solution of

the time-dependent harmonic oscillator equation (23). Assuming the trap frequency (5) and

β ̸= 1, the transformation

x = (1 + Ωt)1/2y(s) , s =
ω0(1 + Ωt)1−β

Ω|1− β|
(A1)

maps (23) into Bessel’s equation,

s2
d2y

ds2
+ s

dy

ds
+ (s2 − ν2)y = 0 , ν =

1

2|1− β|
. (A2)

Hence one can employ

x1 = (1 + Ωt)1/2Jν(s) , x2 = (1 + Ωt)1/2Yν(s) (A3)

in Eq. (22), with Wronskian W = 2(1− β)Ω/π, where Jν , Yν are the Bessel functions of the

first and second kind. The determination of the constants A,B,C in general is found after

some simple algebra given the initial condition.

The marginal case β = 1 deserves a separate analysis, yielding

x1 =
√
1 + Ωt cos T , x2 = (1 + Ωt)1/2 sin T , (A4)

where now

T =

(
ω2
0

Ω2
− 1

4

)1/2

ln(1 + Ωt) , (A5)

and the Wronskian is W = Ω
√

ω2
0/Ω

2 − 1/4. The exact solution of the Pinney equation

with ρ(0) = 1, ρ̇(0) = 0 reads

ρ =
√
1 + Ωt

(cos T − sin T
2
√

ω2
0/Ω

2 − 1/4

)2

+
κ2 sin2 T
ω2
0 − Ω2/4

1/2

. (A6)
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