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A self-consistent relativistic two-fluid model is proposed for electron-ion plasma dynamics. An
one-dimensional geometry is adopted. Electrons are treated as a relativistically-degenerate fluid,
governed by an appropriate equation of state. The ion fluid is also allowed to be relativistic, but
is cold, non-degenerate and subject only to an electrostatic potential. Exact stationary-profile
solutions are sought, at the ionic scale, via the Sagdeev pseudopotential method. The analysis
provides the pulse existence region, in terms of characteristic relativistic parameters, associated
with the (ultra-high) particle density.

I. INTRODUCTION

A detailed understanding of the physics of dense plas-
mas in one-dimensional (1D) geometry is becoming in-
creasingly important, both for practical and fundamen-
tal reasons [1]. For instance, 1D dense plasmas are
of relevance to the target normal sheath acceleration
mechanism [2] produced during the irradiation of solid
targets with a high-intensity laser available with co-
herent brilliant X-ray radiation sources [3]. Further-
more, the nonlinear dynamics of 1D degenerate plasmas
shows a rich variety of behavior; applications include
the dense quantum diode [4], the electron-hole plasma
injected into quantum wires [5], the 1D fermionic Lut-
tinger liquid [6], breather-mode oscillations in 1D semi-
conductor quantum wells [7], Lagrangian structures in
dense 1D plasmas [8], 1D nonlinear envelope modes in
dense electron-positron-ion plasmas [9], among others.
Sagdeev’s pseudopotential method was used to study
the propagation of wave-structures of arbitrary ampli-
tude in a relativistically-degenerate electron-positron-ion
plasmas in Ref. [10], making use of Chandrasekhar’s rel-
ativistic 3D equation of state within a non-relativistic
1D geometry. Small-amplitude nonlinear structures in
dense, relativistic electron-positron-ion plasmas have also
been investigated by means of hydrodynamical modeling
and a multiple-scale perturbative method in Ref. [11].
In addition, systems in the presence of a strong magnetic
field have a modified mobility of the charged carriers due
to confinement in the direction along the field, thus effec-
tively behaving as a one-dimensional gas. In this context,
relativistic dense one-dimensional plasmas are realized in
e.g. the atmosphere of neutron stars [12–14].

Due to the high densities considered for this class of
systems, the large value of the Fermi momentum de-

mands the inclusion relativistic effects. In this case, the
relativistic parameter [15] given by pF /mc is not negli-
gible, where pF and m are respectively the Fermi mo-
mentum and the mass of the charge carriers, and c is
the speed of light. Therefore, it is of general interest
to propose 1D plasma models allowing both degeneracy
and relativistic features. Specifically, in this work we in-
vestigate the relativistic fluid dynamics of ion-acoustic
structures in electrostatic plasmas, where the electron-
degeneracy is described by an equation of state similar
to that of Chandrasekhar [16]. On the other hand, we
consider a cold non-degenerate ion fluid, without the in-
clusion of a Fermi pressure, due to their larger mass. We
have to emphasize that there are many models in the
literature dealing in a non-rigorous way with relativistic
effects on quantum ion-acoustic waves in dense plasmas.
See more comments on this regard in the next Section.

Our aim here is to propose a relativistic fluid model
for ion-acoustic excitations in 1D plasmas taking into
account the electron degeneracy. The layout of this
work goes as follows. First, the basic equations are pre-
sented and manipulated algebraically for convenience.
This is followed by a brief discussion on the choice of
scaling, leading to a dimensionless set of model equa-
tions, to form the basis of our analysis. A linear treat-
ment leads to a dispersion relation for small-amplitude
ion-acoustic waves. We then proceed by adopting the
Sagdeev pseudopotential method for stationary-profile
excitations. Plots of numerical solutions, in the form of
pulse-shaped solitary waves, are presented, and their ex-
istence region and dynamical properties are investigated.
Finally, our conclusions are outlined in the concluding
section.
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II. HYDRODYNAMIC MODEL

The model comprises the particle number (mass) and
momentum conservation equations for the two separate
electron and ion fluids, with the system closed by Pois-
son’s equation:

∂γini

∂t
+

∂

∂x
(γinivi) = 0 ,

∂γene

∂t
+

∂

∂x
(γeneve) = 0 ,(

∂

∂t
+ vi

∂

∂x

)
γivi +

e

mi

∂ϕ

∂x
= 0 ,

meH

(
∂

∂t
+ ve

∂

∂x

)
γeve =

− γe
ne

(
∂

∂x
+

ve
c2

∂

∂t

)
Pe + e

∂ϕ

∂x
,

∂2ϕ

∂x2
+

e

ϵ0
(γini − γene) = 0 . (1)

The equations are obtained from the equations for a neu-
tral isotropic ideal fluid at rest by means of Lorentz
transformation [17]. In the case of charged fluids, one
considers the virtual variations of the electromagnetic
stress-energy tensor; see [18, 19] for details. Further-
more, me,i is the rest mass of the electrons (respectively
ions); ve,i is the velocity of the electrons (respectively

ions); γe,i = (1 − v2e,i/c
2)−1/2 is the relativistic dilation

factor for electrons (respectively ions); ϕ is the electro-
static potential; Pe is the pressure of the electrons; e
is the fundamental unit of electric charge; h is Planck’s
constant and ϵ0 is the permittivity of vacuum.
In our work we adopt a general equation of state for a

fully-degenerate fermion gas in one dimension, which is
valid for all values of the relativistic parameter, pF /mec,
where pF is the electrons Fermi momentum. In contrast,
e.g. Ref. [19] employs a 3D polytropic equation of state
Pe ∼ nα

e , see Eq. (13) therein, focusing specifically on the
particular values α = 5/3 and α = 4/3, which correspond
respectively to the non-relativistic and ultra-relativistic
limits for a fully-degenerate fermion gas in three dimen-
sions. For the sake of comparison, the non-relativistic
and ultra-relativistic cases in our 1D model would give
respectively Pe ∼ n3

e and Pe ∼ n2
e. The Fermi pressure,

Pe, is given by

Pe =
2m2

ec
3

h

(
ξ(ξ2 + 1)1/2 − sinh−1(ξ)

)
, (2)

and the related non-dimensional enthalpy density (pres-
sure plus internal mass-energy density), H, is defined as

H =
√
1 + ξ2 , (3)

where

ξ =
hne

4mec
. (4)

The function H is related to relativistic mass increase
due to thermal (not bulk) motion.

Equation (2) applies for a fully degenerate ideal 1D
electron gas admitting relativistic effects and is reminis-
cent of the Chandrasekhar 3D equation of state used to
describe equilibria in dense stars [16]. It has been de-
rived by Chavanis in the discussion of white dwarf equi-
libria in arbitrary dimensionality [20]. It also appears
in the analysis of wave-breaking amplitude of relativis-
tic oscillations in a thermal plasma described by a water
bag equilibrium [21], in this case without connection to
Fermi-Dirac statistics.

The non-relativistic equation of state Pe =
p2Fn

3/(3men
2
0) is recovered by expanding around

ξ = 0, which formally corresponds to c → ∞ in the
non-relativistic approximation. Here the subscript 0
denotes the value at equilibrium and pF = hn0/4 is the
1D expression of the Fermi momentum. In this context,
the present work is a relativistic complement to the fluid
theory of quantum ion-acoustic waves in 1D geometry
[22]. However, presently we do not include quantum
diffraction effects, which would manifest through a
Bohm potential term. Typically, for very large densities,
quantum effects arising from the Fermi-Dirac statistics
(Pauli’s exclusion principle) are dominant in comparison
to the quantum contributions coming from the wave
nature of the charge carriers. However, quantum
diffraction is essential at nanoscales, for instance in the
treatment of ultra-small electronic devices [23].

The conditions for considering a degenerate electron
fluid and a cold non-degenerate ion fluid can be summa-
rized via the following ordering:

TFi ≪ Ti ≪ Te ≪ TFe , (5)

where TFe,F i denote the electrons (ions, respectively)
Fermi temperature and Te,i are the electrons (ions) ther-
modynamic temperatures, respectively. However, un-
like in Ref. [22], here we do not impose that the elec-
trons’ Fermi energy should be much smaller than the
electrons rest energy. Moreover, general relativity and/or
QED effects are not included in our treatment, since for
instance we limit ourselves to electric field amplitudes
smaller than Schwinger’s field strength ES = m2

ec
3/e~ ≃

1018V/m. In the same footing, the involved plasmon en-
ergies will be assumed to be much smaller than 2mec

2,
so that pair creation processes are disregarded (this is
reasonable except for extremely small wavelengths). In
addition, a fluid treatment is adequate as long as kinetic
effects such as Landau damping are not decisive. Note
that in 1D geometry a fully degenerate electrons parti-
cle distribution function is flat, so that there is no col-
lisionless damping. Finally, the theory is restricted to
weakly-coupled plasmas.

It is instructive to discuss in more detail the full de-
generacy assumption

EFe =
√
p2F c

2 +m2
ec

4 −mec
2 ≫ κBTe , (6)
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where κB is Boltzmann’s constant.
This involves the understanding of the 1D equilibrium

number density n0, which can be viewed in correspon-
dence to a 3D equilibrium number density n3D according
to

n0 =
1

2rs
=
(πn3D

6

)1/3
, (7)

where rs is the Wigner-Seitz radius. In this context we
are considering adjacent spherical “particles” occupying
a sphere of radius rs, with a mean inter-particle separa-
tion 2rs. For instance, in the case of white dwarfs one has
n3D = 1036m−3 and n0 = 8.0 × 1011m−1. Taking into
account the 1D expression of the Fermi momentum, it is
found that electrons would be fully degenerate provided
Te ≪ 6.7× 108K.
The model is recast in dimensionless form by the fol-

lowing scaling,

t 7→ ωpit , x 7→ ωpix/cs ,

ne,i 7→ ne,i/n0 , ve,i 7→ ve,i/cs , ϕ 7→ eϕ/2ẼFe ,
(8)

where ωpi =
√
e2n0/ϵ0mi is the ion plasma frequency,

cs =
√
2ẼFe/mi = hn0/4

√
mime is the non-relativistic

ion-acoustic speed in terms of the non-relativistic elec-
trons Fermi energy ẼFe = p2F /2me and n0 is the equi-
librium density, which is the same for both electrons and
ions by Poisson’s equation. After a little algebra, the
dimensionless model is expressed as

∂γini

∂t
+

∂

∂x
(γinivi) = 0 ,

∂γene

∂t
+

∂

∂x
(γeneve) = 0 ,

∂γivi
∂t

+ vi
∂γivi
∂x

+
∂ϕ

∂x
= 0 ,

me

mi
H

(
∂γeve
∂t

+ ve
∂γeve
∂x

)
=

−neγe
H

(
∂ne

∂x
+ αve

∂ne

∂t

)
+

∂ϕ

∂x
,

∂2ϕ

∂x2
+ γini − γene = 0 , (9)

in terms of the parameters

ξ0 =
pF
mec

, α =
c2s
c2

=
me

mi
ξ20 . (10)

It is apparent that the relativistic parameter ξ0 is the
only remaining numerical constant in the model. The
non-relativistic limit is simply ξ0 ≪ 1.
Finally, in terms of the rescaled variables, we have the

relativistic factor γe,i = (1− αv2e,i)
−1/2.

In passing, we note that even if the parameter α is
small (e.g. due to ξ0 < 1 and also me/mi ≪ 1), in
case of strong nonlinearities the terms containing α may
in principle be important. In particular, there is no a
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FIG. 1: (Color online) Plots of the pseudopotential, V (ne),
for different values of equilibrium density, n0. The curves
crossing the ne-axis at ne = 1.45 (black, bottom), ne = 1.33
(blue, mid) and ne = 1.28 (red, upper) correspond to n0 =
1012m−1, n0 = 5× 1011m−1 and n0 = 1011m−1 respectively.
The Mach number is M = 1.2. The dashed curve represents
the non-relativistic pseudopotential and is a good approxima-
tion to V (ne) for lower equilibrium densities.

priori methodological reason to quickly discard the time-
derivative of the pressure, manifesting in the ∝ ∂ne/∂t
contribution in the electrons force equation in Eq. (9).
Note also that we do not discard the electrons’ convective
derivative, because after restoring physical coordinates it
can be shown that the Fermi pressure vanishes in the in-
ertialess limit (formally me/mi → 0). Moreover the in-
clusion of the electrons’ convective derivative ultimately
leads to a considerable simplification.

III. LINEAR APPROXIMATION

Let us begin our analysis by considering the small-
amplitude limit of the above system of equations (9).

We consider plane waves of the form

ne,i = 1 + ne,i1e
i(kx−ωt) + n̄e,i1e

−i(kx−ωt) ,

ve,i = ve,i1e
i(kx−ωt) + v̄e,i1e

−i(kx−ωt) ,

ϕ = ϕ1e
i(kx−ωt) + ϕ̄1e

−i(kx−ωt) , (11)

where the bar denotes complex conjugation and where
quantities with a subscript “1” are of the same order of
magnitude, which is much less than unity. Linearizing
and retaining only first-order harmonics, we obtain the
following set of linear algebraic equations:

−ωni1 + kvi1 = 0 ,

−ωne1 + kve1 = 0 ,

−ωvi1 + kϕ1 = 0 ,

−me

mi
ωve1

√
1 + ξ20 − kϕ1 +

ne1√
1 + ξ20

k = 0 ,

−k2ϕ1 + ni1 − ne1 = 0 . (12)
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FIG. 2: (Color online) Plots of the pseudopotential, V (ne),
for three values of M . n0 = 1011m−1 throughout. The curve
for M = 2.6 (black, bottom) does not cross the ne-axis and
so does not admit soliton solutions. The curve for M = 2.5
(blue, mid) crosses the axis at ne = 2.6 and the remaining
curve (red, upper) represents M = 2.4.

These equations can be rearranged to yield a disper-
sion relation for the angular frequency ω in terms of
the wavenumber k. As in classical plasma, this relation
consists of two branches: a low-frequency modified ion-
acoustic mode, and a higher frequency (electron plasma)
optical-like mode. These will be discussed elsewhere in
detail. Since we focus on the ionic dynamical scale here,
of interest to us is the former (acoustic) mode, which can
be approximated for small k as follows:

ω2 ≈ k2

δ + k2
, (13)

where we have defined the constant:

δ =

(
1 +

me

mi

√
1 + ξ20

)√
1 + ξ20 . (14)

There is also a high frequency (Langmuir) mode, which
we do not consider any further in this work.
The phase speed in the long wavelength (small

wavenumber, k ≪ 1) limit is obtained as

vph =
ω

k
≃ 1√

δ
. (15)

We draw the conclusion that the quantity δ defined above
contains the essential physics of the (linear) problem; in
fact, its square root is directly related to the (inverse)
screening length, and is also proportional to the “true”
acoustic speed (phase speed) in our plasma configuration.

IV. TRAVELLING-WAVE ANALYSIS

Anticipating stationary profile solutions, we start with
the assumption that nj , vj and ϕ are all functions of a
single variable, X = x − Mt. Here the (scaled) pulse
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FIG. 3: (Color online) The domain of existence is within the
two lines: upper Mach number (red, upper) and lower Mach
number (blue, bottom). Density is given in units of 1011m−1.
(a) shows M in dimensionless form and (b) shows the corre-
sponding true speed, VSol, in units of 106ms−1 once dimen-
sions have been restored.

speed M is the so-called “Mach” number, i.e. the ratio
of the actual pulse speed to the ion sound speed. At this
point M is a real parameter which is left arbitrary. Its
range of values will be investigated later. The model can
thus be rewritten as

−M (γini)
′
+ (γinivi)

′
= 0 , (16)

−M (γene)
′
+ (γeneve)

′
= 0 , (17)

−M (γivi)
′
+ vi (γivi)

′
+ ϕ′ = 0 , (18)

γene

H
(1− αMve)n

′
e −meH(M − ve)(γeve)

′ = ϕ′ ,

(19)

ϕ′′ = γene − γini , (20)
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FIG. 4: (Color online) Extending Fig.3 to a large range of
of equilibrium density suggests that there is no intersection
between the upper and lower Mach numbers and, therefore,
that solitons can exist as solutions to this model for any non-
zero value of n0. Density is given in units of 1011m−1. VSol is
given in units of 106ms−1 in (b). Upper Mach number: red,
upper; lower Mach number: blue, bottom.

where primes denote differentiation with respect to X.
We adopt appropriate boundary conditions:

lim
X→±∞

ne,i = 1; lim
X→±∞

ve,i = 0; lim
X→±∞

ϕ = 0. (21)

Integrating (16)-(18) over the interval (−∞, X], three
useful relations are recovered:

ni,e =
M

γi,e(M − vi,e)
, (22)

ϕ = Mγivi −
γi
α

+
1

α
. (23)

The above relation can be inverted to find vi in terms of
ϕ,

vi =

M
α −

√
M2

α2 −
[
M2 + α( 1

α − ϕ)2
] [

1
α2 − ( 1

α − ϕ)2
]

M2 + α
(
1
α − ϕ

)2 ,

(24)
where the negative sign has been adopted in the numer-
ator in order to agree with boundary conditions.

Equation (19) can be manipulated to yield an expres-
sion for ϕ in terms of ne:

ϕ(ne) =
1

ξ20

(
γ
√
1 + ξ20n

2 (1− αMve)−
√
1 + ξ20

)
.

(25)
It is here that the advantage of retaining the electrons’

convective derivative manifests itself: writing v(γv)′ as
γ′/α allows this convective term to be expressed in such
a manner as to cancel the pressure term. To ignore the
convective term leads to an expression for the electric
potential containing elliptic integrals, which is decidedly
less compact and is unnecessarily complicated as a de-
scription.

Poisson’s relation is manipulated to obtain the follow-
ing integral.

1

2
ϕ′2 =

∫ X

−∞
dX̃ϕ′(γene − γini)

=

∫ X

−∞
dX̃ϕ′γene −

∫ X

−∞
dX̃v′if(vi)γini

=

∫ X

−∞
dX̃ϕ′γene −

∫ vi

0

dvf(v)γn

= Ie − Ii. (26)

In the latter relation, Ie and Ii denote respectively the
first and second integrals in the right-hand side and

f(v) = (M − v) γ3 . (27)

We arrive at a pseudo-balance equation with S(ϕ) =
Ii − Ie:

1

2

(
dϕ

dX

)2

+ S(ϕ) = 0. (28)

The “pseudopotential” function, S(ϕ), determines the
behavior of the solution to the above differential equa-
tion through the properties of its roots (whether they
exist, whether they are also stationary points and, if so,
the nature of these stationary points). The pseudopoten-
tial methodology is well-known (though mostly in classi-
cal system) [24], and the algebraic toolbox accompanying
it has evolved, since its first appearance; details can be
found e.g. in Ref. 25.
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The ions’ contribution to the pseudopotential is
straightforward to evaluate:

Ii =

∫ vi

0

dviMγ3
i = Mviγi . (29)

An expression for Ie is obtained after integrating by
parts. The derived relation is given in terms of ne as
a matter of convenience because, although the function
ϕ(ne) (25) is easily inverted to find ne in terms of ϕ, it
is much easier to work with the electron density.

S(ne) =

[
Mγivi − γn

(
ϕ(n) +

√
1 + ξ20
ξ20

)
+

1

2ξ30

(
sinh−1(ξ0n) + ξ0n

√
1 + ξ20n

2

)]n=ne

n=1

(30)

where [f(n)]n=b
n=a = f(b)− f(a). In order to write (28) in

terms of ne, we make use of (24) and (22) in conjunction
with ϕ(ne) to obtain ve, vi and ni as functions of ne.
Finally, the chain rule for differentiation is used to yield
the pseudo-balance equation:

1

2

(
dne

dX

)2

+ V (ne) = 0, (31)

where the new pseudopotential form, V (ne), is given by:

V (ne) =

(
dϕ

dne

)−2

S(ϕ) . (32)

There is considerable difference between this relativis-
tic pseudopotential and its non-relativistic equivalent
(VNR(ne), given below). This pseudopotential is given
in terms of the same scaling as relativistic counterpart.
Note that the equilibrium density, n0, plays no part in the
dynamics. In contrast, the relativistic case contains an
extra dependence on n0 by way of ξ0(= pFe0/mec). Note
that vi in VNR(ne) refers to the non-relativistic ion fluid
speed. In Fig. 1, it is shown that the non-relativistic case
is a good approximation to V (ne) for low densities in the
specific case shown (M = 1.2). This is true in general for
different Mach numbers. Indeed, it is a straightforward
task to show by means of a Maclaurin series expansion
that VNR(ne) is an approximation to third order in ne

for ξ0 ≈ 0.

VNR(ne) =
1

n2
e

(
Mvi −

1

3
(n3

e − 1)

)
. (33)

V. EXISTENCE CONDITIONS

A series of algebraic constraints should be imposed on
the value of the (real) parameter M , in fact representing
physical constraints on the value of the pulse speed [24,
25].

A. Acoustic limit – lower M boundary.

For this section, it will be easier to work with S(ϕ)
instead of V (ne). A double root is assumed to exist at

equilibrium (where ne = 1, ve,i = 0 and ϕ = 0), recov-
ered for X → ±∞, so that the system may depart from
equilibrium and generate the described excitation. The
following should hold as an identity:

S(ϕ) =

∫ ϕ

0

dϕ̃ γini(ϕ̃)− γene(ϕ̃)

⇒ dS(ϕ)

dϕ
= γini − γene (= 0 when ϕ = 0) . (34)

The nature of this double root depends on the specific
model and is dependent on the value of M . The calcu-
lation shown below results from a manipulation of the
integrated equations of continuity and from (23).

From (22), we have

γe,ine,i =
M

M − ve,i
,

which leads to

ve,i =
Mn2

e,i −
√
αM4 + n2

e,i(M
2 − αM4)

n2
e,i + αM2

(35)

and, accordingly,

γe,ine,i =
n2
e,i + αM2

αM2 +
√

αM2 + n2
e,i(1− αM2)

=

√
αM2 + n2

e,i(1− αM2)− αM2

1− αM2
. (36)

(For brevity, we have proceeded with both subscripts ‘e’
and ‘i’ for electrons and ions, respectively.) Then,

dγe,ine,i

dne,i
=

ne,i√
αM2 + n2

e,i(1− αM2)

( = 1 at ne,i = 1) . (37)

Therefore,

d2S(ϕ)

dϕ2
=

dni

dϕ

dγini

dni
− dne

dϕ

dγene

dne

( =
dni

dϕ
− dne

dϕ
at ne,i=1) . (38)
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For the density variables, we have

dne

dϕ
=

mi

√
1 + ξ20

mi −meM2(1 + ξ20)

(at ne = 1) , (39)

and

dni

dvi
=

d

dvi

M

γi(M − vi)

= −αviγi
M

M − vi
+

1

γi

M

(vi −M)2

( =
1

M
at ni = 1) . (40)

Finally, the ion velocity in the moving frame is given by:

dvi
dϕ

=
1

γ3
i (M − vi)

( =
1

M
at ni = 1) . (41)

Combining the last relations gives, at ϕ = 0,

d2S(ϕ)

dϕ2
=

1

M2
−

√
1 + ξ20

1−meM2(1 + ξ20)/mi
, (42)

which is negative (condition imposed for a local maxi-
mum) for

M >
1/(1 + ξ20)

1/4

(1 +me(1 + ξ20)
1/2/mi)1/2

= 1/δ1/2 ≡ M1. (43)

The threshold M1 thus obtained is precisely equal to the
true “sound” (acoustic) speed in the given plasma config-
uration, as obtained by a linear treatment (refer to (15)
in Sec. III). We deduce that the pulse speed M must be
greater than the phase speed of linear waves. This for-
mula can be approximated by M1 ≈ 1− ξ20/4 for ξ0 ≈ 0
and by M1 ≈ 1/

√
ξ0 for ξ0 ≫ 1.

B. Reality condition – upper Mach number limit.

A second condition on M arises from reality considera-
tions. Recalling that the ion speed vi is given in terms of
the electric potential ϕ by expression (24), we note that
reality of the ion speed variable imposes that the argu-
ment of the square root in (24) must be non-negative. A
maximum value of ϕ is that imposed, viz.

ϕ <
1

α

(
1−

√
1− αM2

)
= ϕmax . (44)

Clearly, the non-relativistic case (ϕmax = M2/2) is
recovered in the non-relativistic limit (α ≪ 1). Indeed,
this can be written in a manner more illuminating:

ϕmax =
(γ(M)− 1)

αγ(M)
, (45)

where γ(x) = (1 − αx2)−1/2. The numerator has the
form of relativistic kinetic energy. Upon restoration of
dimensions, we find for the real potential (denoted here
only as Φ = ϕmic

2
s)

eΦ =
mic

2(γ(M)− 1)

γ(M)
. (46)

The equivalent expression in the non-relativistic case,
which can be obtained directly from the non-relativistic
model or by a Maclaurin expansion of the above, is known
to be

eΦmax =
mi

2
M2c2s =

mi

2
V 2
sol . (47)

Once again, note that the density plays a stronger role
in the relativistic expression. The extra contributions
beyond what is absorbed in the scaling “drop out” in the
non-relativistic limit.

We emphasize that (44) is not necessarily the least
upper bound for a given plasma configuration, i.e. other
constraints may be violated before the upper bound is
attained.

Provided S(ϕ) is negative between its two roots, there
can exist bound solutions. It has been shown that there is
necessarily a root at ϕ = 0. The second root corresponds
to the maximum value of ϕ for the configuration (M, n0)
of the system. For M less than a certain maximum, the
potential crosses the ne-axis before it becomes complex
(where violation of ϕ < ϕmax occurs). See Fig. 2 for a
graphical illustration of this.

Reverting to the pseudopotential V (ne), if it becomes
complex before it reaches its second root, then there can
be no real, bound solutions. Therefore, the maximum
value, M2, of M occurs where the second root coin-
cides with ne,max, which is obtained from ϕmax given
in (44). In other words, the upper bound, M2, is ob-
tained numerically by solving V (ne = ne,max) = 0 –
viz. S(ϕ = ϕmax) = 0 (the lengthy expression is omitted
here).

The lower and upper Mach numbers for a range of
values of the equilibrium density are depicted in Fig. 3,
both in their dimensional and dimensionless form. Recall
that pulse excitations exist between the two curves.

VI. PARAMETRIC ANALYSIS

The closed-form expression for the pseudopotential,
V (ne) (30), allows us to quickly identify general trends,
provided we bear in mind that a change in equilibrium
density will change the scales accordingly. The domain
of existence of our solution for fixed equilibrium den-
sity is defined in the lower limit by the maximum phase
speed and in the upper limit by the value of M at which
V (nmax) = 0 (equivalently S(ϕmax) = 0) (c.f. Sec. V).
A graphical illustration of this point can be seen in Fig.
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2, wherein the curve corresponding to M = 2.4 will ad-
mit localized solutions whereas the curve for M = 2.6
will not. A plot of the existence region for a range of
values of n0 is given in Fig. 3. It should be noted that,
although this plot appears to show a decreasing trend in
the upper limit, M is measured in units of cs, which in-
creases linearly with n0. The second plot in Fig.3 shows
the true speeds corresponding to these Mach numbers,
which we label VSol. The range of densities considered
here correspond to a 3D density of around 1036m−3, or
that of a white dwarf star.
Fig. 4 reproduces the same type of plot(s) for a wider

range of densities, here provided for the sake of compari-
son. This is provided for illustrative purposes, as the cor-
responding densities are too high for today’s high-density
plasma systems of interest.
The pseudoenergy balance equation (31) is integrated

numerically to find ne as a function ofX, M and n0. This
can then be used to plot ϕ, ve, vi, ni and the electric field,
E = −dϕ/dX. Fig. 5 gives these functions for different
values of M . For all, an increase in M results in an
increase in the respective scaled quantity in scaled units.
Fig. 6 shows the complementary arrangement, with M
being fixed and n0 differing between the curves.
As Fig. 2 suggests, the maximum value of ne, here

labeled nm, for a fixed equilibrium density increases as
M increases. (Recall that nm is not necessarily the same
as nmax = n(ϕ = ϕmax), where ϕmax was given in (44).)
This is depicted in Fig. 7(a), where the trend is shown
for three values of n0.
The same trend is exhibited by the maximum value,

ϕm, of the electrostatic potential; see Fig. 7(b). It must
be emphasized that these plots are dimensionless. How-
ever, since nm is scaled by n0 and M by hn0/4

√
mime

(recall the definition in Sec. II), the general trends in nm

for different M and n0 are qualitatively unchanged upon
restoration of dimensions.
On the other hand, ϕm in Fig. 7(b) is scaled by n2

0,
so the gradients would be multiplied by a factor propor-
tional to n0 if dimensions were restored. However, the
qualitative trend of the curves would not change in this

case.

VII. CONCLUSIONS

We have examined the dynamical characteristics (con-
ditions for occurrence, structural features) of large am-
plitude nonlinear pulse-shaped structures in degenerate
plasmas, by making use of a self-consistent relativistic
formalism. We have assumed cold relativistic ions. The
equation of state for an ideal fully-degenerate, relativistic
electron gas in 1D has been applied.

In the non-relativistic limit, the standard equation of
state for ideal fully-degenerate plasma is recovered.

The model has been shown to admit localized solutions
within certain constraints on the density of the plasma
and on the ion-fluid speed. A pseudobalance equation
was derived in a closed form and was then integrated
numerically to plot such solutions for a wide range of
densities and speeds.

We find that the amplitude of our solutions increases
with M for fixed density. A similar increase is observed
by holding M fixed and increasing the density, which
corresponds to a “more relativistic” system.

Our results address for the first time the physical set-
ting of nonlinear structures in degenerate plasmas, adopt-
ing a rigorous, strictly one-dimensional relativistic formu-
lation. Our findings are of relevance in physical settings
where ultradense material configurations occur [2–8].
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FIG. 7: (Color online) The amplitude (maximum value) of
the electron-density (nm) and potential (ϕm) excitations are
plotted as functions of M , considering three values of n0: up-
per (black)- 1012m−1; middle (blue)- 5× 1011m−1 and lower
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