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Abstract
In this entry, the field of quantum plasmas, a generic exotic state of highly ionized matter where quantum
effects are relevant, is reviewed; for example, by dense plasmas arising in strong laser irradiation of solid
targets, in compact astrophysical objects such as white dwarfs or neutron stars, solid-state plasmas, and
ultrasmall electronic devices. The early developments in the subject are described. A concise account of the
microscopic and macroscopic approaches to quantum plasmas is given. New advances are also mentioned,
with an emphasis on relativistic and exchange effects.

INTRODUCTION

A quantum plasma is a system of charged particles where
collective and quantum effects arising from wave–particle
duality and quantum statistics are dominant. Although in the
past, usually the physics of plasmas was considered as a
purely classical field; lately, there has been an increased
interest in quantum properties of plasmas. Motivations for
this change of point of view came from diverse physical
examples from the microscopic (e.g., the ongoing miniatur-
ization involving ultrasmall electronic devices or nanoscopic
metal clusters) and macroscopic worlds (e.g., degenerated
plasmas in the interior of giant planets and compact astro-
physical object like white dwarfs and neutron stars). In addi-
tion, intermediate scale systems such as the plasmas arising
from the irradiation of solid targets with ultra-intense lasers
can degenerate, so that a quantum treatment becomes neces-
sary in some instances. This is the case, for instance, in
inertial confinement fusion experiments, where the initial
strong compression can produce densities comparable to
typical solid state conditions. Also through the simulation
of astrophysical problems through laboratory, laser-produced
plasmas is now an active research area, where quantum
effects tend to be unavoidable.

From the most basic perspective, non-relativistic quan-
tum plasmas are described by a statistical ensemble of N-
particle wavefunctions satisfying Schrödinger’s equation
with self-consistent Coulomb interactions. Equivalently, one
can consider the associated N-particle density matrix, which
solve von Neumann’s equation. The Wigner transform of
the density matrix yields the Wigner function, which has the
advantage of a more direct classical correspondence with the
N-body particle distribution function in phase space. From
appropriate averages involving these objects (wavefunction,
density matrix, or Wigner function), one can calculate all
physical quantities like charge, current, and energy densities,
among others. A similar microscopic modeling can be
enlarged to take into account, spin and relativistic effects.

In the same way as the classical kinetic theory of plas-
mas sometimes gives more information than actually
needed (also at the cost of a more involved analytical treat-
ment), in the quantum case, it is helpful to develop simpli-
fied, macroscopic models. This happens if the details of the
quantum statistical ensemble or the corresponding Wigner
function are not so decisive. For these reasons, of late, there
has been much interest on macroscopic models such as
quantum hydrodynamical and/or quantum magnetohydro-
dynamical models for plasmas, as well as on density func-
tional theories. By means of hydrodynamic modeling, one
can access the nonlinear regimes of quantum plasmas in a
less difficult manner. For instance, conservation laws, non-
linear wave analysis, the construction of nonlinear struc-
tures such as solitonic or periodic solutions and the
assessment of quantum turbulence are examples where a
fluid treatment is found to be a useful starting point.

In spite of the exciting developments, quantum plasma
physics is a traditional topic, with notable achievements
starting mostly in the middle of the 20th century. For this
reason, a section is dedicated to historical notes in this entry.
Finally, we include some notes on very new advances,
regarding the role of exchange and relativistic effects in
quantum plasmas.

This entry is organized as follows. The next section pre-
sents the basic parameters for the characterization of quan-
tum plasmas, followed by a discussion of significant work
from the literature on quantum plasmas. Next, the micro-
scopic and macroscopic descriptions of quantum plasmas are
briefly outlined, with illustrative examples such as the quan-
tum Zakharov equations derived from quantum hydrody-
namics (QHDs) for plasmas, describing the nonlinear
interaction of high frequency (Langmuir) and low frequency
(ion-sound) modes. Subsequently, some of the new advances
are shown, such as the incorporation in the Vlasov equation
of exchange effects due to particle indistinguishability and a
relativistic N-stream model for quantum plasmas, among
others. Finally, conclusions are outlined.
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BASIC PROPERTIES OF QUANTUM PLASMAS

Here, we discuss the most fundamental parameters charac-
terizing quantum plasmas,restricted to the simplest case of
an electron gas embedded in a fixed homogeneous ionic
background. Generalization to multi-species plasmas,
including ions, positrons, or holes, is not difficult. In gen-
eral terms, quantum effects in a collection of charged par-
ticles can be of two classes: 1) quantum effects due to the
wave character of the particles, appearing, e.g., in the wave
function spreading, in the tunnel effect or in the uncertainty
principle; and 2) quantum effects due to the intrinsic parti-
cle indistinguishable character, manifesting (in the case of
fermions like the electrons) in the anti-symmetry of the
N-body quantum state under permutation of elements.
Class 1 refers to quantum diffraction effects, while class
2 refers to quantum statistical or degeneracy effects.

Degeneracy becomes important when the individual
electron wave functions have a significant overlap, so that
the total quantum state cannot be expressed as a simple
tensor product of isolated electron quantum states. There-
fore, the fermionic character of the charge character will be
evident for sufficiently dense plasmas, satisfying:

lB > n�1=3
0 ð1Þ

In Eq. 1,

lB ¼ �h=ðmvTÞ ð2Þ
is the de Broglie wavelength, where �h = �h/(2p) is the
reduced Planck’s constant, m is the electron mass, and VT

is the thermal velocity. For a completely ionized gas, lB is a
measure of the particle wave functions spreading. In terms
of the thermodynamic temperature T, one can define,

mv2T=2 ¼ kBT ð3Þ
where kB is Boltzmann’s constant. Moreover, in Eq. 1,

n�1=3
0 is a measure of the inter-particle distance, valid for

fully ionized plasma, where n0 is the equilibrium number
density of the electron gases.

Condition 1 can be rewritten alternatively (including the
numerical factor (3p2)2/3) as:

EF ¼ �h2

2m
ð3p2n0Þ2=3 > kBT ð4Þ

In Eq. 4, the quantity EF is the Fermi energy, which is the
energy of an electron at the Fermi surface. From Pauli’s
exclusion principle, even for zero thermodynamic temper-
ature it is necessary to occupy higher energetic levels, with
the top level defining the Fermi surface. In terms of the
Fermi temperature TF = EF / kB, one then has the degener-
acy condition,

w ¼ TF

T
> 1 ð5Þ

where w is the degeneracy factor. Hence, dense, low-
temperature plasmas tend to display a quantum behavior,
while dilute, high-temperature plasmas tend to behave
classically. As a consequence, for classical plasmas, the
Fermi-Dirac distribution of states can be approximated by
a Maxwell–Boltzmann distribution. Examples of degen-
erate plasmas are provided by the electron gases in metals
and semi-metals (neutralized by an ionic lattice), dense
semiconductors, thin metallic films excited by short laser
pulses, plasmas created in intense laser-solid interactions,
and the plasma in the interior of giant planets and compact
astrophysical objects such as white dwarfs and neutron
stars.

Besides the de Broglie wavelength, another notable
characteristic spatial scale in dense quantum plasmas is
provided by:

lF ¼ vFffiffiffi
3

p
op

ð6Þ

which is the Thomas-Fermi length lF, where,

vF ¼ ð2EF=mÞ1=2 ð7Þ
is the Fermi velocity and,

op ¼ ½n0e2=ðmE0Þ�1=2 ð8Þ
is the plasma frequency given in terms of the elementary
charge e and the vacuum permittivity E0. The quantity lF
plays the role of a screening length in degenerate plas-
mas, in a similar way as the Debye length lD = vT/op

for classical plasmas.
The exclusion principle forbids the collision of particles

occupying the same quantum state. Hence, in a degenerate
plasma, the electron–electron collision rate nee, which is
typically the most significant collisional contribution, is low-
ered by a factor of the order of (T/TF)

2, with the rough result,

nee
op

� T

TF

� �2 EF

�hop
ð9Þ

The contribution �hop/EF, playing the role of coupling
parameter for degenerate plasmas, is the ratio between the
plasmon excitation energy �hop and the Fermi energy EF

(which is a measure of the electrons kinetic energy).
Dense environments such as in stellar interiors and some
inertial confinement fusion schemes can be safely taken as
collisionless, with negligible nee/op, thanks to large Fermi
temperatures. So, unlike classical plasmas, dense quantum
plasmas are more ideal for larger densities. This produces
enhanced heat conductivity and electron transport. For
instance, for the electron gases in metals at room temper-
ature one has the estimates n0 ’ 1029m�3, T ’ 300K �
TF ’ 105K and nee/op ’ 10�5.

So far, the discussion applys to non-relativistic plasmas
only. In the case of extreme densities, even the incoherent
motion of the particles will be relativistic, with the Fermi

Quantum Plasmas 1217

Po
w
de
rs

–

Se
ed



velocity becoming comparable to the light velocity c. Or in
terms of the Fermi momentum,

pF ¼ �hð3p2n0Þ1=3 ð10Þ
one has a large relativistic parameter z = pF/(mc). In this
case, the Fermi (kinetic) energy assumes the special-
relativistic form,

EF ¼ ðp2Fc2 þm2c4Þ1=2 �mc2 ð11Þ
which reduces to Eq. 4 in the non-relativistic limit z � 1.
Conditions 2 and 3 are still valid, provided the Fermi
energy is reexpressed according to Eq. 11. For instance, for
a number density n0 ’ 1036m�3 (white dwarf) one has ζ =
1.2, while for n0 ’ 1039m�3 (neutron star) one has ζ = 12.0.

More detailed accounts on the basic properties of quan-
tum plasmas can be found, for instance, in the study of
Haas,[1] Shukla and Eliasson,[2,3] Manfredi,[4] and Haas.[5]

General treatises on quantum statistical mechanics are
found in books.[6,7] The present review does not cover
quantum plasmas under very extreme conditions, allowing
for quantum electrodynamic processes such as pair crea-
tion, or dense nuclear matter and the quark-gluon plasma.[8]

Finally, we remark that the above order-of-magnitude dis-
cussion on the relevance of quantum effects should be
viewed with care in concrete applications. For instance,[9]

it can happen that charged particle systems in ultrasmall
semiconductor devices behave in a quantum way (e.g., with
significant tunneling through heterojunction barriers) even
for small values of the degeneracy parameter. This happens
because of the short characteristic length associated with
the spatial variations of the doping profile or boundary
conditions on a nanosized object.

HISTORICAL ANTECEDENTS

Using a collective variables approach, Bohm and Pines[10]

applied a series of canonical transformations in order to
express the N-body Hamiltonian of an electron gas in an
ionic background as a sum of contributions from indepen-
dent fields (each associated with a “plasmon” excitation)
plus a perturbation. In this way, they derived the linear
dispersion relation,

1 ¼ o2
p

X
i

1

ðo� k � viÞ2 � �h2k4
4m2

ð12Þ

with a sum over the electron velocities vi inside the Fermi
sphere, or vi = |vi| ≤vF, where vF is the Fermi velocity. Eq. 1
reduces to:

o2 ¼ o2
p þ

3

5
k2v2F þ

�h2k4

4m2
þ . . . ð13Þ

in the high frequency limit, which gives the quantum Lang-
muir wave dispersion relation in a fully degenerate electron

gas. In Eq. 13, we recognize the salient features of quantum
plasmas, namely the influence of the Fermi statistics in the
* k2 term and of the quantum diffraction in the* k4 term.

It should be noted that historically the first derivation of
the dispersion relation (8) was provided by Klimontovich
and Silin.[11] They considered the quantum Vlasov equa-
tion satisfied by the Wigner function in the presence of a
self-consistent electrostatic field. Similarly, Lindhard[12,13]

has considered the response of fully degenerate quantum
plasmas including quantum recoil, for both longitudinal
and transverse high frequency waves, with particular
emphasis on the imaginary part of the dielectric function
as a function of both frequency and wavenumber. The
results apply to the collisionless damping and stopping
power in the plasma. Although the longitudinal response
is more widely known, in connection with solid state
plasma applications,[14] lately the transverse response has
found to be interesting, e.g., in the discussion of wake fields
and energy loss experiments in electron microscopy.[15]

The pioneering work on quantum plasmas have been
strongly influenced by field theoretical methods, which is
inline with the consolidation of quantum electrodynamics
taking place at the time. In this context, Gell-Mann and
Brueckner[16] estimated the correlation energy of a degen-
erate free electron gas in an immobile homogeneous
ionic background, to leading order on the Wigner–Seitz
radius.[14] They used renormalization techniques to sum the
most divergent terms in the perturbation series for the self-
energy of the electron gas. The leading order term is the
Fermi energy, a measure of the kinetic energy of the system,
while the remaining terms correspond to the exchange cor-
relation energy (discussed later). In addition, Kelly[17]

derived the dielectric function for magnetized quantum
plasmas, using quantum kinetic theory under a Fermi–
Dirac statistics assumption.

For more detailed reviews on the old quantum plasma
literature, studies by Pines[18]and Drummonds[19] can be
consulted. In addition, works by Melrose[20,21] provide
extensive references on the previous developments, in the
context of quantum plasmadynamics, combining quantum
electrodynamics and the kinetic theory of charged particle
systems, in a covariant description of relativistic quantum
plasmas.

MICROSCOPIC MODELING

Non-relativistic quantum systems in general are described
by the N-body density operator,

r̂N ¼
X
a

cajcN
a >< cN

a j ð14Þ

where jcN
a > is the normalized a-th N-body quantum

state occurring with a probability ca in the quantum sta-
tistical ensemble, while < cN

a j is the corresponding dual.
By definition,
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0 � ca � 1;
X

a
ca ¼ 1 ð15Þ

The expectation value of an observable Ô is then,

< Ô > ¼ TrðÔr̂NÞ ð16Þ
where the trace Tr is performed using some suitable basis of
the Hilbert space.

To keep a close resemblance to classical kinetic theory,
it is useful to introduce[22] the Wigner transform of the
density matrix, yielding the N-body Wigner function,

fNðr1; p1; :::; rN; pN; tÞ ¼
N

ð2p�hÞN
ð
ds1:::dsN exp

�i
PN

i¼1 pi � si
�h

 !

� rN r1 þ s1
2
; :::; rN þ sN

2
; r1 � s1

2
; :::; rN � sN

2
; t

� �
ð17Þ

depending on the position and momenta r1, p1, ..., rn, pN of
the N particles in the plasma, besides time. In Eq. 17,
the density matrix elements are:

rN r1 þ s1
2
; :::; rN þ sN

2
; r1 � s1

2
; :::; rN � sN

2
; t

� �
¼

< r1 þ s1
2
; :::; rN þ sN

2
jr̂Njr1 � s1

2
; :::; rN � sN

2
>

ð18Þ

expressed in coordinate representation. It should be noted
that

< Ô >¼
ð
dr1:::drNdp1:::dpNOðr1; :::; rN; p1; :::; pN; tÞ

� fNðr1; p1; :::; rN; pN; tÞ
ð19Þ

where O(r1,..., rN, p1,...,pN, t) is the phase-space expression
obtained from the observable Ô by means of the Weyl
transform.[23] Hence, the Wigner function can be used to
calculate expectation values, in a similar way as with a
classical probability distribution function in phase space.
However, it can happen that f N < 0 in certain regions,
preventing it to be considered as a strict probability distri-
bution, in spite of being always a real quantity.

From the Schrödinger equation satisfied by the quantum
states, it can be shown that the density operator evolve in
time according to the von Neumann equation,

i�h
qr̂N

qt
¼ ½Ĥ; r̂N� ð20Þ

where Ĥ is the Hamiltonian operator of the system and,

½Ĥ; r̂N� ¼ Ĥr̂N � r̂NĤ ð21Þ
is the commutator. Similarly, the N-body Wigner function
can be shown[24] to satisfy a (somewhat complicated)

evolution equation similar to the Liouville equation for the
N-body classical probability distribution function.

An useful approach is to focus on partial traces of the
full N-body density operator or, equivalently, on reduced
Wigner functions. For instance, the 1-body- and 2-body-
reduced Wigner functions, respectively, are:

f 1ðr; p; tÞ ¼
ð
dr2:::drNdp2:::dpNf

Nðr; p; r2; p2; :::; rN; pN; tÞ
ð22Þ

f 2ðr; p; r0; p0; tÞ ¼
ð
dr3:::drNdp3:::dpN

� fNðr; p; r0; p0; r3; p3; :::; rN; pN; tÞ
ð23Þ

Such quantities are important, because most physical obser-
vables are one- or two-particle operators. It can be
shown[24] that the reduced Wigner functions obey a chain
of equations, with the equation for the N-body reduced
Wigner function being dependent on the (N+1)-body
reduced Wigner function. This yields the quantum version
of the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon)
hierarchy satisfied by the reduced probability distribution
functions of classical plasma.[25–28]

In the simplest possible case, namely purely electrostatic
and collisionless (so that the 2-body Wigner function splits
as a product of 1-body Wigner functions), the quantum
plasma is described by the Wigner–Poisson system, which
reads,

qf
qt

þ p

m
� rf þ ie

�hð2p�hÞ3
ð
dsdp0exp

iðp� p0Þ � s
�h

� �

� f r þ s

2
; t

� �
� f r � s

2
; t

� �h i
fðr; p0; tÞ ¼ 0

ð24Þ

r2f ¼ e

E0

ð
dpf ðr; p; tÞ � n0

� �
ð25Þ

denoting f(r, p, t) = f1(r,p,t), where f(r, t) is the scalar
potential and E0 is the vacuum permittivity. In the formal
classical limit �h ! 0, the system expressed as Eqs. 24
and 25 reduces to the Vlasov–Poisson system of
classical plasma, so that it can be called the quantum
Vlasov–Poisson system.

It is apparent that the quantum Vlasov–Poisson system
is an integro-differential set of equations, due to the nonlo-
cal interaction term in Eq. 24. Extensions to include mag-
netic field[29] and spin degrees of freedom,[30] even in the
collisionless regime, give in principle a framework for the
quantum kinetic theory of non-relativistic plasma. Even in
this limited perspective, the resulting theories have not been
extensively understood, specially regarding the physical
interpretation of the several new terms appearing in the
evolution equations. It should be noted that the vast major-
ity of the available literature on quantum kinetic theory for
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plasmas is restricted to linear wave analysis and/or purely
electrostatic problems. In particular, to the best of our
knowledge, there is not yet an efficient 3-D numerical code
for the full Wigner–Maxwell system, which is the quantum
version of the Wigner–Maxwell system (the standard setup
for classical plasma including magnetic fields).

The above sketch of quantum kinetic theory for plas-
mas is not at all complete. For instance, instead of the
reduced Wigner function approach, one may introduce
the concept of nonequilibrium Green functions, leading
to the so-called Keldysh-Kadanoff-Baym equations for
fermions, plasmons, and photons.[31–33] This and other
approaches are not discussed here.

MACROSCOPIC MODELING

The analytic complexity of the microscopic approach sug-
gests the development of simplified macroscopic models,
in order to access the nonlinear and electromagnetic (i.e.,
non-electrostatic) aspects of quantum plasmas. The same is
also valid for classical plasmas, where frequently fluid
approaches such as magnetohydrodynamics are followed,
in spite of the more detailed information provided by the
kinetic approach. In this context, the QHD model for plas-
mas[34,35] is a popular tool. In its simplest form, it reads:

qn
qt

þr � ðnuÞ ¼ 0 ð26Þ

qu
qt

þ u � ru ¼ �rP

mn
� e

m
ðEþ u� BÞ þ �h2

2m2
r r2 ffiffiffi

n
pffiffiffi
n

p
� �

ð27Þ
complemented by Maxwell’s equation for the self-
consistent electromagnetic field,

r � E ¼ e

E0
ðn0 � nÞ ; r � B ¼ 0 ð28Þ

r � E ¼ � qB
qt

; r� B ¼ �m0 enuþ
1

c2
qB
qt

ð29Þ

where n, u are, respectively, the number density and veloc-
ity fields of the electron fluid, P = P(n) is the scalar pres-
sure, E and B are the electric and magnetic fields, n0 is a
neutralizing ionic density background, and m0 is the vac-
uum permeability. In comparison to the classical fluid
model, the most evident difference is in the * �h2 term in
Eq. 27, known as the Bohm potential[36] term. This contri-
bution allows to access classically inaccessible regions (as
in tunneling events), as well as is responsible for extra
dispersion and wave-function spreading. In addition, quan-
tum statistical effects can be incorporated in the equation of
state, adapted to the Fermi–Dirac (or Bose–Einstein) nature
of the charge carriers.

In terms of the Wigner formulation, no more than
two electrons can be accommodated in the same unitary

cell (of the size determined by Planck’s constant) in phase
space, the factor two coming from spin. Hence, for a fixed
spatial volume, there will be the need of occupying states
of progressively higher momentum. The net effect is a
dispersion of velocities, from which the Fermi pressure
follows. The picture holds even at zero thermodynamic
temperature, with the Fermi pressure arising just from the
necessary anti-symmetry of the N-body wave function.
The role of the thermodynamic temperature is associated
with thermal excitations, allowing occupation of states of
energy larger than the Fermi energy. The choice of the
pressure function P = P(n) should be adapted to the spe-
cific problem, e.g., propagation of quantum Langmuir or
quantum ion-acoustic waves.[1]

As in any fluid theory, in the QHD equations for plasmas
a long wavelength condition is assumed, in order to be able
to neglect kinetic effects such as wave–particle resonance,
the plasma echo, and so on. For the QHD model for degen-
erate plasmas, a rough condition is klF � 1, where k is the
wavenumber and lF is the Thomas–Fermi length. This has
support from molecular simulation in Yukawa fluids.[37] For
comparison, in a classical plasma, a necessary condition for
the validity of the fluid modeling is klD � 1, where lD is
the Debye length. However, manifestly such estimates
involve the wavenumber, referring to the propagation of
specific linear waves only, without mentioning nonlinear
or stationary solutions. Similar analyses[37] indicate that the
Bohm potential term tend to be less relevant for strongly
degenerate plasma, in comparison with the Fermi pressure.

It should be emphasized that contrary to some claims[38]

the appearance of the Bohm term in the fluid momentum
does not depend on any assumption on the quantum statis-
tical ensemble. Indeed, although in the work of Manfredi
and Haas,[35] for simplicity, an hypothesis of equal ampli-
tude of all quantum states was used in the derivation,
implying a vanishing osmotic pressure, the same model can
be deduced under general conditions, from the moments of
the quantum Vlasov equation and eikonal decomposition of
the ensemble wave functions. Refer to the study by Haas[34]

for the treatment with magnetic fields and to the study by
Gasser et al.[39] for the simpler electrostatic case. For dis-
cussions about the validity conditions of the QHD model
for plasmas, see the works by Haas,[1,5] Manfredi,[4] and
Schmidt et al.,[37] and also by Barkery and Ferry[40] on the
applicability of QHDs for describing antidot array devices.

The set of Eqs. 26–29 can be improved by the inclusion
of phenomenological exchange-correlation[41] or dissipa-
tion[42] terms, besides special relativity[43] and spin dynam-
ics[44] effects. QHD models are popular in many different
areas, such as in ultrasmall electronic devices model-
ing,[9,45] nuclear,[46] or molecular physics.[47] The Bohm
potential term appear in the form of a gradient correction
to the energy-functional density, known in this context as
the von Weisäcker[48] term.

As an illustration of the fluid theory, one can con-
sider the quantum Zakharov system[49,50] describing the
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nonlinear interaction of Langmuir and ion–sound modes[51]

in a quantum degenerate electron–ion plasma, allowing
for transverse perturbations. The model comprises a set of
hydrodynamic equations for classical, cold ions and elec-
trons with Fermi pressure and Bohm potential terms, cou-
pled to Maxwell equations. Performing a two-time scale
analysis, one may find the quantum Zakharov system,
reading,

i
qE
qt

� 5c2

3v2F
r� ðr � EÞ þ rðr � EÞ ¼

NEþ Hr r2ðr � EÞ� � ð30Þ

q2N
qt2

�r2N�r2ðjEj2Þ þ Hr4N ¼ 0 ð31Þ

where

H ¼ m

M

5�hop

3EF

� �2

ð32Þ

is a parameter proportional to the strength of the quantum
diffraction effects. In the derivation, the electron fluid is
assumed to follow the equation of state for a completely
degenerate quantum gas. The classical Zakharov system[52]

is obtained when H ! 0, besides replacing vF ! vT. The
still undefined symbols in Eqs. 30–32 are the slow-varying
envelope electric field E, the slow part of the density per-
turbation, N, and the ion mass M. In spite of the small value
of the quantum parameter H in most applications, it should
be noted that in nonlinear events, the total contribution
from the quantum terms can be decisive, such as in the
arrest of Langmuir wave collapse. This is due to the extra
dispersion arising from H ≠ 0, as rigorously proven in.[53]

Quantum diffraction produces[50] an effective repulsive
potential, preventing collapse. The system 22–23 is a start-
ing point for the analysis of nonlinear solutions like bright
or dark solitons, vortical states, and related structures.[50]

SOME NEW ADVANCES

In this section, a few very new outcomes in the field are
cited, starting with exchange correlation effects in quantum
plasma. The exchange correlation energy is the difference
between the total interaction energy and the electrostatic
energy obtained under an independent particle (or Hartree)
assumption. In the Hartree approximation, the two-particle
number density is the product of single-particle number
densities, neglecting entanglements of any sort.

The exchange correlation energy comes from two influ-
ences: on one hand, the Fermi correlation arising from
Pauli’s principle, which is decisive for electrons of the same
spin; this is the exchange energy. On the other hand, there is
the Coulomb correlation, which is the more relevant con-
tribution for electrons of same spin; this is named as cor-
relation energy.

Exchange effects in the framework of kinetic theory for
quantum plasmas in the low frequency limit have been
presented in the work by Zamanian.[54] The available
results now indicate that exchange is more relevant for
low-frequency processes, such as quantum ion-acoustic
wave propagation, while being safely ignorable in high
frequency processes, such as the propagation of quantum
Langmuir waves. The challenge is to obtain a detailed
comparison of this and other conclusions with those from
time-dependent density functional theory. While exact in
principle, in practice, density functional theories need a
phenomenological parametrization of the exchange corre-
lation energy.[55]

Relativistic quantum plasmas are receiving renewed
attention, on the analysis of the quantum relativistic wave
kinetics,[56] relativistic spin quantum plasmas,[57] the treat-
ment of streaming instabilities, relativistic spin quantum
plasmas,[58] and rigorous special relativistic fluid equations
for degenerate plasma.[43]

We also remark on the new experimental techniques to
probe the quantum aspects of plasmas, thanks to the strong
multi-petawatt laser facilities under development. Sensitive
measures of the plasma electron density and on the quan-
tum shift on the dispersion relation are becoming available,
using X-ray Thomson scattering techniques in high-energy
density plasmas.[59,60] In the same context, the laboratory
simulation of astrophysical scenarios is also a trend, where
quantum plasma effects are relevant.[61] Finally, the rele-
vance of quantum diffraction on particle trapping,[62] the
derivation of macroscopic equations using Grad’s moments
method,[63] and the role of quantum aspects on streaming
instabilities in dense plasma,[64] could equally be well men-
tioned, among others.

CONCLUSION

In this entry, we briefly reviewed the salient characteristics
of quantum plasmas, including remarks on the pioneering
works, on the basic models, and on future perspectives in
the field. The area of quantum plasmas is a traditional
subject, attracting attention over the years, at least because
of some most natural questions: when and how will a large
system of charged particles with collective behavior
(a plasma) exhibit quantum behavior? Lately, the accrued
urge of interest around quantum plasmas is facilitated due
to the development of new experiments allowing, e.g., the
assessment of the Fermi pressure and Bohm potential
corrections by X-ray irradiation in forward scattering
geometry. Besides, new models have been introduced
allowing the progressive incorporation of relevant effects,
specially regarding spin dynamics, relativistic phenomena,
and exchange-correlation energy. Much attention is being
paid to the nonlinear collective behavior of quantum plas-
mas, through analytical and numerical work, toward the
identification of new nonlinear structures such as vortices
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and solitons in such systems. In particular, nonlinear anal-
ysis is necessary in the high intensity electromagnetic field
regime, such as in plasmas arising under the action of
strong laser–matter interactions, and in extreme astrophys-
ics environments. In addition, the increasing relevance of
systems on an intermediate scale, such as metal clusters and
thin metal films, or possible connections with promising
fields such as spintronics, provides further motivation for
the development of the quantum plasma area.
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