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Abstract – The one-dimensional stationary quantum Vlasov equation is analyzed using the en-
ergy as one of the dynamical variables, similarly as in the solution of the Vlasov-Poisson system
by means of the Bernstein-Greene-Kruskal method. In the semiclassical case where quantum
tunneling effects are small, an infinite series solution is developed and shown to be immediately
integrable up to a recursive chain of quadratures in position space only. As it stands, the treatment
of the self-consistent, Wigner-Poisson system is beyond the scope of the method, which assumes a
given smooth time-independent external potential. Accuracy tests for the series expansion are also
provided. Examples of anharmonic potentials are worked out up to a high order on the quantum
diffraction parameter.

Introduction. – The Wigner function was intro-1

duced almost one century ago [1], as a distinguished joint2

probability distribution in quantum mechanics. The ap-3

plications of the Wigner function appear in many contexts,4

such as quantum entanglement, classical and quantum in-5

formation processing, quantum electronics and quantum6

chemistry, see [2] for a recent review. Specifically in quan-7

tum plasmas, it plays a rôle for instance in nonlinear8

waves and wavebreaking [3], Landau damping effects on9

bremsstrahlung process [4], quantum free-electron-lasers10

[5] and the bound states near a moving charge, using Lind-11

hard’s dielectric function which can be derived from the12

Wigner-Poisson system [6]. It is therefore an important is-13

sue, to derive accurate expressions of the Wigner function,14

which is the subject of the present work.15

The Wigner function obeys the so-called Wigner-Moyal16

or quantum Vlasov equation [7]. The classical limit of the17

Wigner-Moyal equation is the Vlasov equation, which is18

solved by an arbitrary function of the constants of motion19

of the system. In the time-invariant case, this allows the20

derivation of Bernstein-Greene-Kruskal equilibria [8] for21

the Vlasov-Poisson system of the classical plasma, taking22

the energy as the central dynamical variable. However, as23

expected, the quantum kinetic equation does not preserve24

the classical constants of motion. In view of this, most25

approaches for the Wigner-Moyal equation rest on semi-26

classical treatments, restricted to the first order quantum 27

correction [9]- [12]. This includes the original article by 28

Wigner [1], where the lowest order quantum correction to 29

the Maxwell-Boltzmann equilibrium was evaluated. Nev- 30

ertheless, already in [1] the possibility of series solutions 31

up to arbitrary order has been proposed, see also [13]. 32

In addition, the role of the energy as an useful dynami- 33

cal variable has been identified, for a certain class of so- 34

lutions of the stationary one-dimensional Wigner-Moyal 35

equation and Wigner-Poisson system not restricted to the 36

semiclassical case [14]. The connection between the quan- 37

tum mechanical and classical time-evolutions by means 38

of a dynamical (Ermakov) invariant was also recognized 39

[15]. However, the series expansion solution jointly with 40

the choice of the energy as central object was not proposed 41

before. In this way we will show that not only an infinite 42

chain of partial differential equations is found [1]. Much 43

differently, we are allowed to immediate quadrature in po- 44

sition space, recursively and up to arbitrary order on the 45

quantum parameter. By definition, the treatment of the 46

self-consistent, Wigner-Poisson system is beyond the scope 47

of the method, at least in its present form, which assumes 48

a given smooth time-independent external potential. 49

The purpose of the present work is to demonstrate the 50

usefulness of the energy as a key dynamical variable in 51

the solution of the one-dimensional quantum Vlasov equa- 52
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tion, in terms of a power series solution which can be eas-53

ily implemented up to arbitrary order on the quantum54

effects, reducing the problem to quadrature in configura-55

tion space only. The approach can be viewed as the quan-56

tum analogue of the Bernstein-Greene-Kruskal method [8].57

However, our treatment does not consider a self-consistent58

field, as would be necessary for quantum plasmas for in-59

stance, because in this situation both the Wigner func-60

tion and the scalar field would be necessarily expanded.61

Likewise, the case involving electromagnetic fields treated62

in a gauge invariant manner will be left for future works63

[16, 17]. It must be emphasized that the details of the64

zeroth-order solution (the classical limit) are not decisive65

for the procedure.66

This work is organized as follows. We introduce the67

one-dimensional quantum Vlasov equation written in di-68

mensionless variables appropriate for semiclassical expan-69

sions. Afterward we consider the time-independent situ-70

ation and a transformation of variables where a key role71

is played by the classical Hamiltonian. The power series72

solution on the scaled quantum parameter is shown to be73

always reducible to a chain of quadratures, once the ex-74

ternal potential is specified, leaving free the classical limit75

of the Wigner function. The recursive procedure is illus-76

trated in the cases of quartic potentials and of a modu-77

lated harmonic potential, yielding the Wigner function up78

to high order on the quantum-tunneling-effects parameter.79

Finally, our conclusions are outlined.80

Statement of the problem. – The quantum Vlasov81

equation, or Wigner-Moyal equation, is the kinetic equa-82

tion for the evolution of the Wigner quasi-probability dis-83

tribution function [7]. In one spatial dimension, it reads84

∂f

∂t
+

p

m

∂f

∂q
− θh̄[V ]f = 0 , q, p ∈ ℜ , t > 0 , (1)

where f = f(q, p, t) is the Wigner function, m is the mass,85

h̄ is the reduced Planck constant and V = V (q, t) is the86

potential. The quantity θh̄[V ] is a pseudo-differential op-87

erator [18] defined in terms of the symbol88

(δV )h̄(q, η, t) ≡
i

h̄

(
V (q +

h̄η

2
, t)− V (q − h̄η

2
, t)

)
, (2)

videlicet,89

(θh̄[V ]f)(q, p, t) = (3)

=
1

2π

∫
ℜ

∫
ℜ
(δV )h̄(q, η, t)f(q, p

′, t)ei(p−p′)ηdp′dη ,

assuming appropriate functions f, V .90

In the semiclassical limit h̄ → 0 detailed e.g. in [19],91

Eq. (1) becomes the one-dimensional Vlasov equation,92

∂f

∂t
+

p

m

∂f

∂q
− ∂V

∂q

∂f

∂p
= 0 . (4)

Expanding to higher orders yields93

∂f

∂t
+

p

m

∂f

∂q
− ∂V

∂q

∂f

∂p
+

+
h̄2

24

∂3V

∂q3
∂3f

∂p3
− h̄4

1920

∂5V

∂q5
∂5f

∂p5
= O(h̄6) . (5)

It is evident that the form of the quantum correction terms 94

makes it difficult to find an exact solution of the quantum 95

Vlasov equation, even in the stationary case. The excep- 96

tion if for a quadratic potential, where the series expan- 97

sion quickly terminates so that the quantum and classical 98

Vlasov equations coincide. 99

It is convenient to adopt scaled dimensionless variables 100

defined by 101

qs =
q

q0
, ps =

p

p0
, fs =

f

p0q0
, Vs =

V

V0
, h̄s =

h̄

p0q0
, (6)

where q0, p0 and V0 = p20/m are respectively character- 102

istics length, momentum and energy. For applications, 103

the natural scaling sets the parameters of the external po- 104

tential to unity, as much as possible. Just for the sake of 105

illustration, for the harmonic potential V = mω2q2/2 with 106

angular frequency ω it is reasonable to set Vs = q2s/2, im- 107

plying p0 = mωq0. In this case, one has h̄s = h̄ω/(p20/m), 108

where V0 = p20/m can be estimated by the thermal or 109

Fermi energies, according to the degeneracy degree. This 110

prescription should be adapted to each physical system, 111

and determines the concrete value of h̄s therein. In 112

passing, we note that h̄s is a measure of the quantum- 113

diffraction effects (or wave effects in general), in the sense 114

that in the classical limit h̄s → 0 the Wigner-Moyal equa- 115

tion reduces to the Vlasov equation. 116

Dropping the subscript s, one has the stationary 117

(∂/∂t = 0) quantum Vlasov equation 118

p
∂f

∂q
− θh̄[V ]f = 0 , q, p ∈ ℜ , (7)

where f = f(q, p), V = V (q), 119

(δV )h̄(q, η) =
i

h̄

(
V (q +

h̄η

2
)− V (q − h̄η

2
)

)
, (8)

and 120

(θh̄[V ]f)(q, p) = (9)

=
1

2π

∫
ℜ

∫
ℜ
(δV )h̄(q, η)f(q, p

′)ei(p−p′)ηdp′dη .

The rescaling provides a more sensible approach for the 121

semiclassical limit, in terms of a series expansion on the 122

dimensionless h̄ parameter. In the following, we derive a 123

concise expression for the formal series solution of Eq. (7) 124

up to arbitrary order on the quantum-tunneling effects, 125

for arbitrary zeroth-order Wigner function in the classical 126

limit. 127

Formal power series solution. Recursion for- 128

mula. Validity conditions. – In the classical limit, 129

it is known that the Vlasov equation is solved for an arbi- 130

trary function of the constants of motion (Jeans theorem). 131
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In order to take advantage of this, it is appropriate to de-132

fine the new variables (x,H) according to133

x = q , H =
p2

2
+ V (q) , (10)

so that134

∂

∂q
=

∂V

∂x

∂

∂H
+

∂

∂x
,

∂

∂p
= p

∂

∂H
. (11)

Equation (7) for f = f(x,H) becomes135

p
∂f

∂x
=

∞∑
j=1

1

(2j + 1)!

(
ih̄

2

)2j
∂2j+1V (x)

∂x2j+1

(
∂

∂p

)2j+1

f ,

(12)
where at this stage the momentum p is maintained. Notice136

that the right-hand side of Eq. (12) is formally zero in the137

classical limit. The potential and the Wigner function are138

assumed to be smooth, otherwise the present treatment139

does not apply.140

A direct calculation shows that141

∂jf

∂pj
=

∞∑
k=0

j! pj−2k

2k k! (j − 2k)!

∂j−kf

∂Hj−k
. (13)

In passing, for the interpretation of Eq. (13) we note that142

0! = 1 and 1/j! = 0 if j is a negative integer. Equation143

(13) allows to convert Eq. (12) into144

∂f

∂x
=

∞∑
j=1

(
ih̄

2

)2j
∂2j+1V (x)

∂x2j+1
× (14)

×
j∑

k=0

1

(2j − 2k + 1)!

p2(j−k)

2k k!

∂2j−k+1 f

∂H2j−k+1
.

Using p2 = 2(H − V (x)) finally yields145

∂f

∂x
=

∞∑
j=1

(
− h̄2

2

)j
∂2j+1V (x)

∂x2j+1
× (15)

×
j∑

k=0

(H − V (x))j−k

22k k! (2j − 2k + 1)!

∂2j−k+1 f

∂H2j−k+1
.

It is natural to seek for a series solution146

f =

∞∑
j=0

h̄2jfj(x,H) , (16)

provided the scaled Planck constant is a small parameter.147

Inserting into Eq. (15), to zero order one has148

∂f0
∂x

= 0 ⇒ f0 = f0(H) . (17)

In the classical limit the stationary Wigner function de-149

pends on the energy only, as expected.150

The next order correction can be expressed as 151

∂f1
∂x

= − ∂

∂x

[ 1

2

∂2V

∂x2

(
(H − V )

6

∂3f0
∂H3

+
1

4

∂2f0
∂H2

)
+

+
1

24

(
∂V

∂x

)2
∂3f0
∂H3

]
, (18)

yielding 152

f1 = − 1

2

∂2V

∂x2

(
(H − V )

6

∂3f0
∂H3

+
1

4

∂2f0
∂H2

)
− 1

24

(
∂V

∂x

)2
∂3f0
∂H3

+ f01(H) , (19)

where f01(H) is an arbitrary function of H. It can be 153

verified that if the potential is quadratic, then f1 becomes 154

a function of H only, 155

V = a+ bx+ cx2 (20)

⇒ f1 =
1

24
(4ac− b2 − 4cH)

∂3f0
∂H3

− c

4

∂2f0
∂H2

+ f01(H) ,

which is expected since in this case the quantum correc- 156

tions to the Vlasov equation disappear (here a, b, c are con- 157

stants). The same holds for the higher order corrections 158

when the potential is quadratic. 159

When f0 is a Maxwellian, Eq. (19) reproduces the 160

Wigner result for a quantum corrected thermodynamic 161

equilibrium [1]. However, the expression (19) holds for ar- 162

bitrary f0, for instance for Fermi-Dirac or Bose-Einstein 163

equilibria and beyond. 164

From Eqs. (15) and (16), to general order one derives 165

∂fl
∂x

=

l∑
j=1

(
− 1

2

)j
∂2j+1V

∂x2j+1
× (21)

×
j∑

k=0

(H − V )j−k

22kk!(2j − 2k + 1)!

∂2j−k+1fl−j

∂H2j−k+1
, l = 0, 1, . . .

Although it can be cumbersome to find the general ex- 166

pression for fl, l ≥ 2, for a specific V (x) the higher or- 167

der corrections are directly obtained by quadrature of the 168

right-hand side of Eq. (21), wherein H is just a parame- 169

ter. Indeed, f2 will be found inserting f0,1 from Eqs. (17) 170

and (19) together with the external potential and after a 171

quadrature. Similarly for f3 which will depend on f0,1,2, 172

and so on in an infinite recursive chain of quadratures in 173

position space only. For this reason, the details of f0(H) 174

(the classical equilibrium) are obviously not decisive for 175

the step-by-step procedure. In other words, instead of a 176

cumbersome sequence of partial differential equations to 177

be solved order by order for the quantum corrections, one 178

finds a sequence or first-order ordinary differential equa- 179

tions all reducible to quadratures. The calculation is easily 180

implemented with a computer-algebra program. 181

It is evident from Eq. (21) that all fj are defined up to 182

the addition of an arbitrary function of H. For instance, 183
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if one starts with f0 ≡ 0, one gets f1 = f01(H) and then184

from Eq. (21) the next order result is185

f2 = − 1

2

∂2V

∂x2

(
(H − V )

6

∂3f01
∂H3

+
1

4

∂2f01
∂H2

)
− 1

24

(
∂V

∂x

)2
∂3f01
∂H3

+ f02(H) , (22)

where f02(H) is an arbitrary function. In this case one186

has f/h̄2 = f01(H) + h̄2f2 + . . . , exactly reproducing Eq.187

(19) where f0(H) ̸= 0, with the replacements f0(H) →188

f01(H), f01(H) → f02(H), as seen by comparison. In gen-189

eral, it can be directly shown that190

f = f0(H) + h̄2F1(f0(H)) + h̄4F2(f0(H)) + . . . (23)

+ h̄2
[
f01(H) + h̄2F1(f01(H)) + h̄4F2(f01(H)) + . . .

]
+ h̄4

[
f02(H) + h̄2F1(f02(H)) + h̄4F2(f02(H)) + . . .

]
,

where the Fj are linear operators such that Fj(0) = 0 , j =191

1, 2, . . . In this context each bracket term in Eq. (23) start-192

ing with a different seed function f0j(H) separately cor-193

responds to a solution of the quantum Vlasov equation,194

which is linear in the case of an external potential. With195

this proviso we can omit the arbitrary functions, setting196

f0j = 0 and focusing on the determination of F1,2,..., which197

simplifies the algebra together with a saving of computer198

running time. It is interesting to note that the structure of199

the solutions of the stationary one-dimensional quantum200

Vlasov equation contains a certain arbitrary functional de-201

pendence on the energy first integral, as much as in the202

classical case.203

It is difficult to determine the convergence of the series204

expansion. However, there are some necessary conditions205

for a faithful Wigner function, which should correspond to206

a positive definite density matrix [20], namely,207

Pq(q, h̄) =

∫
ℜ dp f∫

ℜ dp
∫
ℜ dq f

≥ 0 , (24)

Pp(p, h̄) =

∫
ℜ dq f∫

ℜ dp
∫
ℜ dq f

≥ 0 , (25)

Q(h̄) =

∫
ℜ dp

∫
ℜ dq f2

(
∫
ℜ dp

∫
ℜ dq f)2

≤ 1

2πh̄
, (26)

valid for arbitrary normalization. Equations (24) and (25)208

correspond to positive definite marginal probability distri-209

butions in position and momentum spaces. Equation (26)210

rules out too spiky Wigner functions violating the uncer-211

tainty principle. These necessary conditions provide an212

useful test for the accuracy of the series solution.213

Example: one-dimensional Goldstone potential.214

– For the sake of illustration, consider the symmetry215

breaking one-dimensional Goldstone potential216

V = −q2

2
+

q4

4
, (27)

in rescaled variables. Being the simplest symmetric model 217

besides the quadratic potential so that the Vlasov and 218

quantum Vlasov equations do not coincide, the quartic os- 219

cillator was investigated in the context of quantum echoes 220

[21]. We carried on the series in Eq. (16) up to O(h̄10), 221

solving the chain of equations shown in Eq. (16) to the 222

same order, always setting the additive functions of H to 223

zero, having in mind the structure detected in Eq. (23). 224

For instance, using the computer algebra software Wol- 225

fram Mathematica 11.0 it is easy to quickly derive 226

f1(x,H) =
1

48

((
6− 18x2

)
f
(2)
0 +

+
(
4H − 12Hx2 − 3x4 + x6

)
f
(3)
0

)
, (28)

f2(x,H) =
x2

4608

[
252

(
−2 + 3x2

)
f
(4)
0

− 18
(
32H + (6− 48H)x2 − 16x4 + 5x6

)
f
(5)
0

+
(
−96H2 + 24H(−1 + 6H)x2 +

+ 80Hx4 + (9− 24H)x6 − 6x8 + x10
)
f
(6)
0

]
,

(29)

which yields the O(h̄4) correction, obviously valid for ar- 227

bitrary seed function f0, denoting derivatives as f
(j)
0 = 228

∂jf0/∂H
j . The heavy expressions for the next order cor- 229

rections will be omitted. 230

For the sake of illustration, we chose a Fermi-Dirac dis- 231

tribution, 232

f0 =
1

exp(H)/z + 1
, (30)

where z = exp(µ) is the fugacity in terms of the dimen- 233

sionless chemical potential µ. In terms of the degeneracy 234

parameter χ = TF /T , where T and TF are the thermody- 235

namic and Fermi temperatures, one has [22] 236

Li3/2(−z) = − 4χ3/2

3
√
π

. (31)

Equation (31) contains the polylogarithm function 237

Liν(−z) defined by 238

Liν(−z) = − 1

Γ(ν)

∫ ∞

0

sν−1 ds

exp(s)/z + 1
, ν > 0 , (32)

where Γ(ν) is the gamma function. In what follows, we 239

set z = 1, which corresponds to intermediate degeneracy 240

(χ = 1.01). In addition, in what follows we normalize 241

all Wigner functions to unity (
∫
ℜ dp

∫
ℜ dq f = 1). In this 242

setting one has the Wigner function shown in Figure 1 for 243

h̄ = 0.6. 244

Figure 2 shows the Wigner function contour plots for 245

different values of h̄. It is apparent that for larger quan- 246

tum effects the fixed points at q = ±1, p = 0 start to merge 247

due to tunneling, besides showing some negative value re- 248

gions. Negative values of the Wigner function can be also 249

precisely detected, as shown in Figure 3. 250
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Fig. 1: Wigner function calculated up to O(h̄10) for the one-
dimensional Goldstone potential in Eq. (27) and h̄ = 0.6, with
f0 given by Eq. (30) with fugacity z = 1.

The probability distribution Pq(q, h) in position space251

from Eq. (24) is depicted in Figure 4. As apparent, a252

larger quantum parameter produces significant regions of253

negative values of Pq(q, h), which is indicative that the se-254

ries expansion solution is not sufficiently accurate for such255

large values of h̄. On the other hand, the appearance of256

negative values of the probability distribution in momen-257

tum space Pp(p, h̄) from Eq. (25) is not an issue, at least in258

the present example, as seen in Figure 5. However, a large259

h̄ yields a significant distortion and oscillatory pattern of260

the otherwise Gaussian-like form.261

The quantity 2πh̄Q(h̄) is shown in Figure 6, using Eq.262

(26). For large quantum diffraction parameter one has a263

growing Q(h) and one verifies that for large h̄ the inequal-264

ity (26) is not meet anymore, which indicates a violation265

of the uncertainty principle. This could be expected since266

in this case a semiclassical expansion would be inappro-267

priate.268

Example: quartic potential without symmetry269

breaking. – We briefly consider the case of a quartic270

potential without symmetry breaking,271

V =
q4

4
. (33)

It obviously belongs to the same class of quartic potentials272

of the previous example, but with q = 0 as the unique sta-273

ble fixed point. Moreover, there are significant differences274

for the computer algebra running time and convergence, as275

separately verified. Omitting the details and performing276

the quadratures up to O(h̄10) with the Fermi-Dirac distri-277

bution in Eq. (30) and z = 1, we find for instance Figure 7278

for the marginal probability distribution in configuration279

space and different quantum diffraction strengths. The280

checking of the inequality (26) produces similar results as281

shown in Figure 6.282

Example: confining potential with ripples. – As283

a final example, we consider284

V =
q2

2
[1 + a cos(2πq)] , 0 < a < 1, , (34)

which is a modulated harmonic potential shown in Figure285

8. We have performed the series expansion up to O(h̄10)286

with the Fermi-Dirac defined in Eq. (30) with z = 1 and287

Fig. 2: Contour plots of the Wigner function with the same
choices of Fig. 1, for h̄ = 0.3 (left) and h̄ = 0.6 (right).

Fig. 3: Detail of negative values of the Wigner function with
the same setting of Figures 1 and 2, with h̄ = 0.6.

Fig. 4: Probability distribution Pq(q, h) in position space from
Eq. (24), for h̄ = 0.6 (left) and h̄ = 0.7 (right), using the same
settings of the previous figures.

Fig. 5: Probability distribution Pp(p, h) in position space from
Eq. (25), for h̄ = 0.7 (left) and h̄ = 0.8 (right), using the same
settings of the previous figures.

Fig. 6: Quantity 2πh̄Q(h̄) from Eq. (26) as a function of the
quantum diffraction parameter, using the same settings of the
previous figures.
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Fig. 7: Probability distribution Pq(q, h) in position space from
Eq. (24), for h̄ = 0.7 (left) and h̄ = 0.8 (right), for the Fermi-
Dirac classical distribution in Eq. (30) with fugacity z = 1 and
the quartic potential from Eq. (33).

the modulation parameter a = 1/2. The results are sim-288

ilar to the previous examples, but it can be verified that289

the existence of ripples makes the series approximation290

less efficient already at smaller values of the scaled Planck291

constant, restricted to h̄ < 0.5 in this case.292

Conclusions. – The main result of this work is Eq.293

(21), determining the expansion functions fl(x,H) , l =294

0, 1, 2... in Eq. (16) by means of a sequence of quadra-295

tures once the lower order expansion functions are known.296

This is always possible in terms of the recursive applica-297

tion of Eq. (21). Therefore we provide a recipe for the al-298

most immediate solution of the stationary one-dimensional299

Wigner-Moyal equation up to arbitrary order on quantum-300

diffraction effects measured by a dimensionless Planck301

constant. Obviously the possibility of quick quadratures302

in configuration space only, is an enormous advancement303

in comparison with solving a chain of non-trivial partial304

differential equations at each order [1]. For higher-order305

quantum-tunneling-effects, the procedure is best carried306

on using a computer-algebra package. An arbitrary classi-307

cal limit f0(H) of the Wigner function is allowed, although308

certain choices can certainly deserve more computer time309

than others. Accuracy tests for the series expansion were310

also provided. The examples of a one-dimensional Gold-311

stone potential, of a purely growing quartic potential and312

of a modulated harmonic confinement have been worked313

out up to O(h̄10). For the sake of definiteness the focus314

was on the Fermi-Dirac distribution, although the details315

of f0(H) are not decisive for the efficiency of the method.316

The rôle of the energy integral was for the first time317

shown in detail, to be decisive for the expedite power se-318

ries solution of the basic quantum kinetic equation for319

the Wigner function in a stationary external potential.320

We provided a formal solution of the quantum Vlasov321

equation, as a recursive chain of quadratures in position322

space. In the present context, the Hamiltonian was the ap-323

propriate dynamical variable, due to the one-dimensional324

stationary character. The results are important when-325

ever an accurate Wigner function is necessary, beyond326

the lowest-order semiclassical O(h̄2) approximation. The327

procedure applies for external potentials only. The case328

involving a self-consistent piece as in ultra-small semi-329

conductor devices and quantum plasmas described by the330

Wigner-Poisson system [23] needs further considerations,331

Fig. 8: Modulated harmonic potential from Eq. (34) with a =
1.

since in this situation the potential must obviously be also 332

expanded as a power series on the quantum diffraction pa- 333

rameter. 334
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