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The collective electron dynamics in metal clusters is studied using a semiclassical approach based
on quantum hydrodynamics. The model incorporates the principal quantum many-body features,
such as the Hartree potential and exchange and correlation effects. Through a variational method,
the hydrodynamic equations are reduced to a simple set of differential equations, which are used to
determine the ground state and the linear response of the cluster. The nonlinear response is explored
by means of numerical simulations. We show that, by irradiating the cluster with a chirped laser
pulse with slowly varying frequency (autoresonance), it is possible to drive the electron dynamics
far into the nonlinear regime, leading to the complete ionization of the cluster on a timescale of the
order of 100 fs. The accompanying radiated power spectrum is significantly broad.

PACS numbers: 36.40.Gk, 36.40.Vz, 73.63.-b

I. INTRODUCTION

Metal clusters [1] are mesoscopic systems composed
of a relatively small number of metallic atoms, typically
between a few tens and several millions. In many re-
spects, metal clusters behave as giant “atoms” where the
positive charge is not localized in the nucleus but is dis-
tributed more or less uniformly within the cluster. In-
deed, their electronic ground state reveals a shell struc-
ture with discrete energy levels, akin to those of ordinary
atoms. Large metal clusters represent a bridge between
molecules and bulk solids. As such, they often exhibit
properties belonging to both of these classes of objects
and therefore are of great fundamental and practical in-
terest.

Experimentally, it is nowadays possible, by means
of ultrafast spectroscopy techniques, to assess the fem-
tosecond dynamics of the electron gas confined in a
metal clusters [2–4], so that the theoretical predictions
can be directly compared to the experimental measure-
ments. Typical experiments involve perturbing the elec-
tron charge and spin with an ultrashort light pulse (the
pump), followed by a second weaker pulse (the probe)
that acts as a diagnostic tool. By modulating the rela-
tive amplitude of the signals, as well as the delay between
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the pump and the probe, it is possible to measure with
great precision the dynamical relaxation of the electron
gas.

From the theoretical and computational point of view,
metal clusters are generally described using fully quan-
tum treatments based on the density functional theory
(DFT), the random phase approximation (RPA) [5, 6],
or Hartree-Fock models. The linear response of metal
clusters has been the object of intense investigations in
the last few decades [7, 8]. A strong dipole resonance
is observed near the Mie frequency, which for spherical
clusters in the jellium approximation is given by the bulk
plasma frequency divided by

√
3. Using more sophisti-

cated approaches, it can be shown that the resonant fre-
quency actually depends on the cluster size.

The nonlinear electron response is much harder to sim-
ulate numerically using many-body approaches such as
the time-dependent DFT [9]. A possible alternative re-
lies on the use of macroscopic models based on a set of
quantum hydrodynamic (QHD) equations [10, 11]. The
QHD equations are obtained by taking velocity moments
of the Wigner phase-space probability density. Lower-
order moments are related to physically relevant quan-
tities such as the particle density, average velocity, and
pressure. Hydrodynamic methods were successfully used
in the past to model the electron dynamics in molecu-
lar systems [12], metal clusters and nanoparticles [13–
15], thin metal films [16], quantum plasmas [17, 18] and
semiconductors [19].

Even the QHD equations are still relatively hard to
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solve numerically. In order to achieve a further degree of
simplification, we developed a variational approach that
expresses the QHD model in the form of a Lagrangian
density L that depends on the relevant hydrodynamic
variables, e.g., the density n, the average velocity u, and
the potential V . By postulating a reasonable Ansatz for
these variables (e.g., a Gaussian profile for the density,
as was done in Ref. [15]) it is possible to obtain a set
of ordinary differential equations for some macroscopic
quantities such as the center of mass and the radial ex-
tension of the electron cloud. These equations can then
be investigated analytically or solved numerically with
very modest computational effort.

In this work, we focus on the collective oscillations of
the electron dynamics in metal clusters. This type of
oscillations can be excited using a laser pulse. Usually,
the wavelength of the laser light (in the visible range,
λ ∼ 400 − 800nm) is much longer than the diameter of
the cluster (d ∼ 5 − 50nm), so that the laser excites an
electronic dipole mode, corresponding to collective oscil-
lations of the center of mass of the electron population.
As the ion mass is thousands of times that of the elec-
trons, it is appropriate – when studying effects occurring
on a short timescale (< 100 fs) – to assume that the ions
are effectively immobile and that they can be modeled
by a uniform positive charge density (jellium approxima-
tion).

Using the variational approach, we will study the elec-
tron dynamics in a similar way as was done in Ref. [15]
for electron-positron plasmas. For the ground state and
the linear response regime, our results will be compared
to the standard results of metal cluster theory [1, 5–8].

Subsequently, we will investigate the excitation of
strongly nonlinear collective electron oscillations. In
particular, we will show that a metal cluster can be
completely ionized by exciting the electron gas with a
chirped laser pulse with slowly varying frequency (au-
toresonance). Thanks to the autoresonant technique, the
instantaneous frequency of the system approaches and
stays locked to the varying frequency of the driving field,
so that the resonant match is never lost and the ampli-
tude of the oscillations can grow without limits (until, of
course, other effects start playing a role). Autoresonant
effects were observed in many different physical systems,
ranging from atomic physics [20, 21] to fluid dynamics
[22], plasmas [23, 24], nonlinear waves [25, 26], planetary
systems [27, 28], and quantum oscillators [29–31].

The autoresonant technique is very flexible and effi-
cient, inasmuch as no feedback mechanism is required
to match the driving frequency with the oscillator fre-
quency. The only requirement is that the former varies
slowly in time. This technique could be used experimen-
tally to induce the rapid and complete ionization of an
assembly of metal clusters.

II. QUANTUM HYDRODYNAMIC MODEL

In order to study the electron dynamics in a metal
cluster, we make use of a quantum hydrodynamic (QHD)
model [10, 11] that governs the evolution of a small num-
ber of macroscopic quantities, such as the electron den-
sity n(r, t), mean velocity u(r, t), and pressure P (r, t).
In the rest of this work, all quantities are expressed in
atomic units, whereby space is normalized to the Bohr
radius a0 = 4πε0h̄

2/(me2), energy to the Hartree energy
EH = me4/(4πε0h̄)2, and time to tH = h̄/EH .

The QHD model is based on a set of two hydrodynamic
equations

∂n

∂t
+ ∇ · (nu) = 0, (1)

∂u
∂t

+ u · ∇u = ∇VH −∇VX − ∇P

n
+

1
2
∇

(∇2
√

n√
n

)
,(2)

coupled to Poisson’s equation for the Hartree potential
VH :

∇2VH = 4π (n− ni) , (3)

where ni(r) is the density of the ion bulk.
Equation (1) is the continuity equation representing

conservation of mass, while Eq. (2) is an Euler equation
that provides the evolution of the mean velocity under
the action of the forces that appear on the right-hand
side. The mean-field part of the electron-electron inter-
actions is taken into account by the Hartree potential VH .
The potential VX represents the exchange interaction:

VX = − (3π2)1/3

π
n1/3 − 4β

3
(∇n)2

n7/3
+ 2β

(∇n)2

n4/3
, (4)

where the first term is the local density approximation
(LDA) and the other two terms constitute a gradient
correction. The prefactor β is a free parameter that we
set equal to β = 0.005, which is a best-fit frequently used
in atomic-structure calculations [32]. For the pressure P
we use the standard expression of the Fermi pressure for
a zero-temperature electron gas:

P =
1
5

(
3π2

)2/3
n5/3, (5)

which is an acceptable approximation because the Fermi
temperature for metals is much larger than ordinary tem-
peratures (e.g., for gold, TF = 64200 K). The last term,
often referred to as the von Weizsäcker correction or the
Bohm potential, takes into account quantum diffraction
effects. The details of the derivation of the QHD model
can be found in Ref. [11]. Note that correlation effects
have been ignored so far. They can be included in the
QHD model in the form of a density-dependent correla-
tion potential VC [n(r, t)], which is done in Sec. IV. In
practice, the corrections brought by the inclusion of cor-
relation effects are rather minimal.
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Variational method.— It can be showed that the hydro-
dynamic model (1)-(2) can be derived from the following
Lagrangian density [15, 19]

L = n

[
∂S

∂t
+

(∇S)2

2

]
+

(∇n)2

8n
+

3
10

(
3π2

)2/3
n5/3

− 3
4π

(
3π2

)1/3
n4/3 − β

(∇n)2

n4/3
− (∇VH)2

8π
+ (ni − n) VH .

(6)

This Lagrangian density depends on three scalar fields,
namely the density n(r, t), the Hartree potential VH(r, t),
and the phase function S(r, t), which is related to the
mean velocity u by the expression u = ∇S.

We consider a neutral spherical metal cluster composed
of N electrons and N singly-ionized ions, with N typi-
cally varying between 10 and 106. We adopt a jellium
approximation, i.e., we assume that the ions are fixed
and form a homogeneous positive charge distribution in-
side the cluster. Therefore, the ion density can be written
as

ni =
{

nc, r ≤ R,
0, r > R,

(7)

where r = |r| and R is the radius of the cluster, which is
related to the Wigner-Seitz radius rs by the expression:
R = rsN

1/3. The ions density in the cluster is given by
nc = N/

(
4
3πR3

)
.

Our purpose is to derive, using a variational approach,
a set of evolution equations for a small number of macro-
scopic quantities that characterize the electron density
profiles [15, 19]. For this, we need a suitable Ansatz for
the electron density. To a good approximation, the elec-
tron density in a metal cluster is flat and equal to nc

inside the cluster (r ≤ R), while it decreases smoothly
to zero near r = R (see Fig. 1). Some electrons are
present beyond the nominal cluster radius R, an effect
know as spill-out. More accurate quantum calculations
show that the electron density displays some oscillations
(Friedel oscillations), which originate from quantum in-
terference of the wave functions corresponding to differ-
ent energy levels. These oscillations cannot be recovered
by our semi-classical QHD approach.

In order to reproduce qualitatively such a density pro-
file, we assume that the electron density has the following
form:

n(r, t) =
A

1 + exp
[(

s
σ(t)

)3

−
(

R
σ0

)3
] , (8)

where A = 3N/(4πσ3)
[
ln

(
1 + exp (R/σ0)

3
)]−1

is cho-

sen to satisfy the normalization condition
∫

ndr = N ,
and s is a displaced radial coordinate defined as s(t) =√

x2 + y2 + [z − d(t)]2. In the above expression, we in-
troduced two macroscopic dynamical variables, namely:
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FIG. 1: Color online. Schematic view of the ion and electron
densities for different values of the spill out parameter σ0.

(i) the center of mass of the electron gas d(t), which
can be displaced along the z axis; and (ii) the thick-
ness of the spill-out effect σ(t). At equilibrium, one must
have d = 0 and σ = σ0. The value of the spill-out at
equilibrium, σ0, is not predetermined and must be com-
puted self-consistently, as it will be shown later. The
electron density issued from Eq. (8) is plotted in Fig.
1, and satisfies the expected properties

∫
ndr = N and∫

nzdr/N = d.
Of course, such an Ansatz is not exact and may even

differ significantly from the electron density obtained, for
instance, from DFT calculation [33]. Nevertheless, it is
a useful expression, since it will allow us to describe two
types of electronic motions: a dipole mode d(t) along
the z axis and a breathing mode that corresponds to
oscillations of the spill-out thickness through σ(t).

We first need to obtain an expression for the two other
fields, S and VH , as a function of the dynamical variables
d(t) and σ(t). In order to determine S(r, t), or equiva-
lently the mean velocity u(r, t), we insert Eq. (8) into the
continuity equation (1). This yields the exact solution

u =
σ̇

σ
(xx̂ + yŷ) +

[
σ̇

σ
(z − d) + ḋ

]
ẑ, (9)

which gives

S =
σ̇

2σ

[
x2 + y2 + (z − d)2

]
+ ḋ (z − d) , (10)

where the dot stands for differentiation with respect to
time.

In order to obtain the Hartree potential, we rewrite
the last two terms in Eq. (6) as

− (∇VH)2

8π
+(ni−n)VH =

(∇VH)2

8π
−∇ · (VH∇VH)

4π
. (11)

The last (divergence) term disappears upon integration
over space for reasonable boundary conditions, so that



4

only the gradient of VH is required. We decompose the
Hartree potential as VH = Vi + Ve, where Vi,e are the
contributions due to the ions and the electrons respec-
tively, which satisfy the equations: ∇2Vi = −4πni and
∇2Ve = 4πn. Assuming spherical symmetry and inte-
grating once in the radial co-ordinate, we find

∂Vi(r)
∂r

=





− N

R3
r , r ≤ R

−N

r2
, r > R

(12)

and

s2 ∂Ve(s, t)
∂s

=
N

ln(1 + 1/a)

{
s3

σ3
− ln

[
1 + a exp(s3/σ3)

]

+ ln(1 + a)
}

, (13)

where we introduced the small parameter a =
exp

(−R3/σ3
0

)
. Note that Eq. (13) is well-behaved both

for s → 0 and s →∞.
Having obtained the expressions for the fields n, S,

and ∇VH – given by Eqs. (8), (10), (12) and (13) –
we may proceed to integrate the Lagrangian density (6)
with respect to the radial variable in order to obtain the
Lagrangian function L(d, σ). The only difficulty arises
from the cross term

∫
(∇Ve · ∇Vi)dr, which can only be

found in terms of a power series in the variable d/R.
Skipping the details, which are given in the Appendix A,
we obtain up to order O(d5/R5):

L =
−1
N

∫
Ldr =

M(a)σ̇2

2
−U(σ)+

ḋ2

2
−Ω2

d(σ)d2

2
+K(σ)d4,

(14)
where the fictitious mass

M(a) = −Γ(5/3)Li5/3(−1/a)
ln(1 + 1/a)

> 0 (15)

is given in terms of a gamma function Γ(5/3) ' 0.90 and
a polylogarithm function Li5/3 [39]. The multiplicative
factor−(1/N) was introduced in Eq. (14) for convenience
of notation. The other terms in Eq. (14) are the pseudo-
potential

U(σ) =
fB(a)

σ2
+

N2/3fF (a)
σ2

− N1/3fX(a)
σ

− βfX′(a)
N1/3σ

+
Nfee(a)

σ
− Nfei(σ)

R
(16)

and the functions

Ω2
d(σ) =

N

R3 ln(1 + 1/a)

{
R3

σ3
+ ln(1 + a)

− ln
[
1 + a exp(R3/σ3)

] }
, (17)

K(σ) =
9NRa

40 ln(1 + 1/a)σ6

exp(R3/σ3)
[1 + a exp(R3/σ3)]2

, (18)

which are both positive definite.
The quantities fB , fF , fX , fX′ , fee and fei, which

appear in the pseudo-potential (16), are given explic-
itly in the Appendix A. They are related respectively
to the Bohm potential, Fermi pressure, exchange en-
ergy (LDA), gradient correction to the exchange en-
ergy, electron-electron and electron-ion Hartree interac-
tion terms. All these functions are positive, in accordance
with the role played by the Bohm, Fermi and electron-
electron terms, which are repulsive, and by the exchange
and the electron-ion terms, which are attractive. The
quantity Ω2

d(σ) corresponds to the second order term in
the development of the electron-ion interacting energy,
whereas K(σ) corresponds to the fourth order.

Using the Euler-Lagrange equations

d

dt

∂L

∂ζ̇
− ∂L

∂ζ
= 0 , (19)

where ζ = {d, σ}, we obtain the following coupled equa-
tions of motion

σ̈ =
1

M(a)

{
− dU(σ)

dσ
+

3Nd2

2σ4 ln(1 + 1/a)
1

1 + a exp(R3/σ3)

− 27NRa exp(R3/σ3)d4

40 ln(1 + 1/a)σ10

×
[
1− a exp(R3/σ3)

]
R3 + 2

[
1 + a exp(R3/σ3)

]
σ3

[1 + a exp(R3/σ3)]3

}
,

(20)

d̈ = −Ω2
d(σ)d + 4K(σ)d3, (21)

which describe respectively the breathing and dipole os-
cillations.

The approximation made on the Lagrangian (14) (ex-
pansion to the fifth order in d/R) has an impact only on
the dipole equation (21), which should in principle con-
tain an infinite number of odd terms in the variable d.
We kept the lowest order that leads to a nonlinear term
in the dipole equation.

In summary, we have reduced the formidable prob-
lem of the quantum electron dynamics in a metal cluster
(which requires, in principle, a complex DFT or at least
mean-field approach) to a simple set of two coupled dif-
ferential equations. Note that no assumption of linearity
was made so far, so that Eqs. (20)-(21) can be used
to study the nonlinear response (as long as d is not too
large). Various results based on the above equations will
be presented in the next Sections.

III. GROUND STATE AND LINEAR RESPONSE

Ground state.— The ground state of the system is ob-
tained by setting the time derivatives equal to zero in
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FIG. 2: Color online. Plot of the pseudo-potential U(σ) given
by Eq. (16) as a function of σ, for different cluster sizes. As
expected, U(σ) has a single minimum located at σ = σ0.

Eqs. (20)-(21). Equation (21) is satisfied automatically
for d = 0 (meaning that the center of mass of the ions
and the electrons should coincide). Setting d = 0 in
Eq. (20), the stable equilibria are then the minima of
the pseudo-potential U(σ), defined by σ = σ0 such that
U ′(σ0) = 0 and U ′′(σ0) > 0 (see Fig. 2). In the present
case the pseudo-potential U depends itself on the equi-
librium value σ0 (through the functions fB , fF , etc. . . ,
see Appendix A). Therefore, an iterative process should
be applied to find σ0 with a certain precision, starting
from a trial value.

Results for gold clusters (rs = 3.01) are given in Table
I for different cluster sizes. The ratio of the spill-out
thickness σ0 to the radius of the cluster R decreases with
increasing number of particles in the cluster (Fig. 3), in
agreement with known results [33].

Linea response.— Having determined the ground state
of the system (i.e., the value of σ0) we can proceed to
study the linear response of the electron gas. There are
two linear modes, corresponding to oscillations of σ(t)
(breathing mode) and oscillations of d(t) (dipole mode).

We first consider the breathing frequency, denoted
by Ωb. Setting d = 0 in Eq. (20) and expanding
U(σ) around σ0 up to first order, we obtain M(a)σ̈ =
U ′′(σ0)(σ−σ0). The linear breathing frequency is there-
fore:

Ωb =
[

1
M(a)

d2U

dσ2
(σ0)

]1/2

. (22)

Next, we consider the dipole mode. Assuming that
σ = σ0 and d ¿ 1, Eq. (21) becomes: d̈ + Ω2

d(σ0)d = 0.
From Eq. (17) the linear dipole frequency is then

Ωd =

√
N

R3 ln(1 + 1/a)

[
R3

σ3
0

+ ln
(

1 + a

2

)]
. (23)

N R σ0 Ωd Ωb

50 11.09 6.24 0.1793 0.2988

100 13.97 7.21 0.1821 0.3059

150 15.99 7.86 0.1835 0.3093

200 17.60 8.36 0.1843 0.3114

250 18.96 8.77 0.1848 0.3129

300 20.15 9.12 0.1852 0.3141

350 21.21 9.43 0.1856 0.3150

400 22.18 9.70 0.1859 0.3158

450 23.07 9.95 0.1861 0.3164

TABLE I: Ground-state and linear-response parameters for
gold clusters of different sizes. All quantities are expressed in
atomic units.

0.12 0.16 0.20 0.24 0.28

0.44

0.48
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0.56

o/
R

N-1/3

FIG. 3: Ratio of the spill-out parameter σ0 to the cluster
radius R versus N−1/3, for gold clusters. The values are taken
from Table I. The spill-out thickness becomes less important
with increasing N .

The results for the breathing and dipole frequencies
are summarized in Table I.

For large clusters, the dipole frequency should be equal
to the Mie frequency [1, 34]

ωMie =
ωp√

3
=

√
4πnc

3
, (24)

where ωp =
√

4πnc is the plasmon frequency in atomic
units. Indeed, taking the limit R/σ0 → ∞ in Eq. (23)
and making use of the expressions a = exp(−R3/σ3

0) → 0
and nc = N/(4πR3/3), one finds exactly the Mie fre-
quency defined above.

In the general case, the dipole frequency depends on
number of particles in the cluster. It has been shown
that this dependence is of the following form [5]:

Ωd(N) = ωMie

(
1− k

N1/3

)
, (25)
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FIG. 4: Color online. Linear dipole (red squares, top panel)
and breathing (blue squares, bottom panel) frequencies ver-

sus N−1/3, taken from Table I. The straight lines are linear
fits. The extrapolation to N → ∞ yields the respective bulk
frequencies. Note that their ratio is very close to

√
3.

where k > 0. Our model reproduces very well this N−1/3

law, as can be seen from Fig. 4a, which displays the
dipole frequency as a function of N , using the data of
Table I. The extrapolation at N → ∞ gives the Mie
frequency in the bulk.

Interestingly, a similar behavior is also found for the
breathing frequency Ωb, as shown in Fig. 4b. Although
the N dependence is the same, the bulk breathing fre-
quency is given by the plasmon frequency rather than
the Mie frequency, so that we have

Ωb(N) = ωp

(
1− k′

N1/3

)
, (26)

where k′ > 0 and ωp =
√

3ωMie. This can be understood
by noting that the dipole oscillations are a surface mode,
whereas the breathing oscillations are a volume mode.
This behavior was already observed in DFT calculations
of Al and Na metal clusters [6].

Finally, we show the results of some numerical simu-
lations of Eqs. (20)-(21) in the linear regime. We start
from a configuration close to equilibrium (ground state
with d = 0 and σ = σ0), then we perturb it slightly and
observe the subsequent oscillations of d(t) and σ(t). The
frequency spectra of these oscillations are plotted in Fig.
5 for N = 200. The observed maxima are located very
close to the theoretical dipole and breathing frequencies
listed in Table I, thus validating the numerical simula-
tions.

IV. CORRELATION EFFECTS

So far, our model included exchange effects but no
other type of correlations. In the framework of DFT,
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FIG. 5: Color online. Simulated frequency spectrum for the
dipole mode (left panel) and the breathing mode (right panel)
for gold clusters with N = 200.

correlations can be introduced through an appropriate
functional of the electron density. Here, we use the func-
tional proposed by Brey et al. [35], which yields the
following correlation potential

VC = −γ ln
[
1 + αn1/3

]
, (27)

with γ = 0.03349 and α = 18.376. With this potential,
the Euler equation becomes

∂u
∂t

+ u∇u = ∇VH −∇VX −∇VC − 1
mn

∇P

+
h̄2

2m2
∇

[∇2
√

n√
n

]
. (28)

In order to include this correlation potential, the follow-
ing term needs to be added to the Lagrangian density

LC = − γ

6α3

[
−6αn1/3 + 3α2n2/3 − 2α3n

+6
(
1 + α3n

)
ln

(
1 + αn1/3

)]
. (29)

This yields a new term in the integrated Lagrangian of
the system:

LC = − 1
N

∫
LC dr

=
2πγ

3α3N

[
− 6αĀ1/3I1σ

2 + 3α2Ā2/3I2σ

−2α3N + 6I3(σ)σ3
]
, (30)
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where

Ā = Aσ3 =
3N

4π

[
ln

(
1 + exp

(
R

σ0

)3
)]−1

,

I1 =
∫ ∞

0

X2

[1 + a exp(X3)]1/3
dX,

I2 =
∫ ∞

0

X2

[1 + a exp(X3)]2/3
dX,

I3(σ) =
∫ ∞

0

X2

[
1 +

B(X)3

σ3

]
ln

[
1 +

B(X)
σ

]
dX,

and

B(X) =
αĀ1/3

[1 + a exp (X3)]1/3
.

The resulting corrections can be incorporated in the
pseudo-potential function U(σ). The new terms are as
follows

UC(σ) = fcσ
2 − fc′σ − fc′′I3(σ)σ3, (31)

where

fc =
4πγ

α2N
Ā1/3I1,

fc′ =
2πγ

αN
Ā2/3I2,

fc′′ =
4πγ

α3N
.

Notice that the correlation effects only affect the equa-
tion for σ, but not the dipole. The properties of the
ground state will also be modified, in particular the equi-
librium value of the spill-out thickness σ0. Neverthe-
less, these changes remain quite small, for instance σ0

decreases by only 3%. The results for the ground state
and the linear response with correlations are summarized
in Table II.

In Fig. 6 we compare the linear dipole and breathing
frequencies with and without correlations. Both frequen-
cies are slightly larger when correlations are included,
but the difference becomes smaller with increasing clus-
ter size, as it should. For N →∞ both frequencies con-
verge to their bulk values, respectively ωMie and ωp. Cor-
relations may become important for very small systems
(N < 50), but in that case our QHD model is itself ques-
tionable. Finally, the corrections of the pseudo-potential
are also quite small, so that we do not expect a significant
change in the nonlinear dynamics (see next Section).

V. NONLINEAR RESPONSE AND
AUTORESONANT EXCITATION

We now turn our attention to the excitation of the elec-
tron and positron dynamics by means of electromagnetic

N R σ0 Ωd Ωb

50 11.09 6.07 0.1803 0.3026

100 13.97 7.0 0.1830 0.3089

150 15.99 7.61 0.1843 0.3118

200 17.60 8.09 0.1850 0.3138

250 18.96 8.48 0.1855 0.3154

300 20.15 8.81 0.1859 0.3162

350 21.21 9.1 0.1862 0.3170

400 22.18 9.37 0.1864 0.3175

450 23.07 9.6 0.1866 0.3182

TABLE II: Ground-state and linear-response parameters for
gold clusters of different sizes, including correlations. All
quantities are expressed in atomic units.
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FIG. 6: Color online. Linear dipole (a) and breathing (b)

frequencies for gold clusters as a function of N−1/3. Blue
circles and red squares represent respectively the results with
and without correlations. The straight lines are linear fits.
The data are those of Tables I and II.

waves (laser pulses). First, it should be noted that the
relevant linear frequencies computed in the preceding sec-
tion are of the order of a few electron-volts. For instance,
for N = 200, Ωd = 0.1841 a.u. = 5 eV. These frequencies
fall within the visible or near ultraviolet (UV) spectrum,
which is encouraging since visible and near-UV lasers are
commonly employed in ultrafast optics experiments. For
such lasers, the wavelength is several hundred nanome-
ters long, i.e., much larger than the size of a typical metal
cluster (see Table I). This means that the laser pulse can
only couple to the dipole mode.

We assume that the electron gas in the cluster is ex-
cited via an oscillating electric field directed along the z
axis

E = Ez(t)ez = E0 cos (ωt) ez, (32)

where ω is the frequency of the laser and E0 is the am-
plitude of the electric field.
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The interaction energy between the laser and the elec-
tron gas is equal to

∫
nVlasdr, where Vlas = −zEz. The

new Lagrangian is obtained by adding this interaction
term to the previous Lagrangian

L′ = L− 1
N

∫
(−nzEz)dz = L + Ezd, (33)

where L is given in Eq. (14). This correction only
changes the equation for d, which becomes

d̈ = −Ω2
d(σ)d + 4K(σ)d3 − Ez(t). (34)

Numerical simulations of the dipole and the breather
motions are shown in Fig. 7. We choose the laser fre-
quency equal to the dipole frequency ,i.e., ω = Ωd, so
that the excitation is resonant. As expected, the dipole
oscillations grow rapidly, but then decrease after some
time. This is because the effective dipole force [right-
hand side of Eq. (34)] is not harmonic and the resonant
frequency actually depends on the amplitude of the os-
cillations. Therefore, when the amplitude increases, the
laser frequency will no longer match the instantaneous
dipole frequency: the resonant condition is lost and the
amplitude of the oscillations d(t) stops growing. We also
note that the breathing frequency Ωb is excited nonlin-
early (Fig. 7a), with some delay with respect to the
dipole mode.

The above limitation can be overcome by resorting to
autoresonant excitation [36]. Basically, autoresonance
occurs when a classical nonlinear oscillator is externally
excited by an oscillating field with slowly varying fre-
quency. In our notation

Ez(t) = E0 cos
[
Ωd(t− t0) +

1
2
α(t− t0)2

]
, (35)

where E0 is the excitation amplitude. The time-
dependent frequency of such excitation is equal to

ω(t) = Ωd + α (t− t0) . (36)

where t0 is the time when the instantaneous frequency of
the laser is equal to the linear frequency of the dipole
mode, and α is the rate of variation of the laser fre-
quency. It can be shown that, for |α| ¿ Ω2

d and E0

above a certain threshold, the instantaneous oscillator
frequency becomes “locked” to the instantaneous excita-
tion frequency, so that the resonance condition is always
satisfied. In that case, the amplitude of the oscillations
grows indefinitely and without saturation, until of course
some other effect kicks in. It was previously shown [36]
that the threshold behaves as Eth

0 ∼ |α|3/4, implying that
the amplitude can be arbitrarily small, provided that the
external frequency varies slowly enough. As mentioned in
the Introduction, autoresonant excitation has been been
fruitfully applied to a variety of nonlinear systems, rang-
ing from condensed-matter to astrophysics.

In Fig. 8, we display the results of an autoresonant
excitation of the electron gas, for two values of the laser
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FIG. 7: Nonlinear dynamics of the electron gas in a gold
cluster with N = 200, excited by a laser field of intensity
E0 = 6 × 1010 W/cm2 and constant frequency equal to the
dipole frequency, ω = Ωd. The form of the laser excitation is
given by Eq. (32). Top panel (a): breathing mode; Bottom
panel (b): dipole mode.

amplitude E0 that are either below or above the autores-
onant threshold. When E0 = 4.5 × 1010W/cm2 (below
threshold, Fig. 8a), the dipole oscillations grow initially
and then saturate at a rather low level (d ≈ 0.15R). For
this case, Fig. 8c shows the instantaneous laser frequency
and the dipole frequency of the electron gas, which was
determined numerically using a Hilbert transform tech-
nique [37]. The two frequencies stay close together ini-
tially, but then diverge, showing that the autoresonant
excitation did not work in this case.

In contrast, when E0 = 5.7 × 1010W/cm2 (above
threshold), the amplitude of the dipole oscillations in-
creases virtually without limits, reaching 80% of the size
of the cluster (Fig. 8b). Indeed, the laser and the elec-
tron gas frequencies are locked to each other during the
entire duration of the simulation (Fig. 8d), indicating
that the system stays in resonance all the time. This is
clearly the hallmark of the autoresonant excitation. We
stress that the value d ≈ 0.8R means in practice that all
the electrons have been ejected from the cluster, which
therefore has been completely ionized. This ionization
occurs on a very short time scale, of the order of a few
hundred femtoseconds.

It should be noted that for large values of d our model
is no longer valid. Indeed, since we expanded the La-
grangian to a certain order in d/R, the force acting on
the dipole in Eq. (21) becomes repulsive for d exceeding
a certain critical value dcr (which depends on σ), whereas
in reality it should always be attractive. A mathemat-
ical analysis of the equations of motion shows that this
critical value reaches its minimum for σ ≈ σ0 (i.e., near
equilibrium), where dcr ' 0.65R. Even with this limita-
tion, our simulations constitute a clear proof of principle
that the electron gas can be very strongly excited and the
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FIG. 8: Color online. Autoresonant excitation of a gold clus-
ter with N = 200. We set the parameters α = 6.67 × 10−6

a.u. and t0 = 36 fs and use two values of the electric field
amplitude, namely E0 = 4.5 × 1010W/cm2 [left panels, (a)
and (c)] and E0 = 5.4 × 1010W/cm2 [right panels, (b) and
(d)]. The top panels show the time evolution of the dipole
d(t), whereas the bottom panels display the laser frequency
(red straight line) and the instantaneous dipole frequency of
the electron gas (blue curve).

cluster completely ionized using an autoresonant ioniza-
tion.

In Fig. 9, we show the threshold electric field as a
function of the frequency sweep rate α. As expected,
the threshold field varies as α3/4, in agreement with the
theory [36] and with the numerical results obtained for
a variety of other nonlinear oscillators. This is a further
confirmation that we are indeed observing the autoreso-
nant mechanism at work.

It is also interesting to study the total power radiated
by the electron gas, for cases above and below the critical
threshold at which autoresonance occurs. In order to
simplify the problem, we suppose that we are far from
the system, so that the electron gas can be viewed as
an electric dipole of charge −Ne and displacement d(t)
oscillating along the z axis. In this case we can apply the
Larmor’s formula [38] for the total radiated power:

P (t) =
e2

6πε0c3
|d̈(t)|2. (37)

It is expected that the total power spectrum P (ω) will
be localized around the linear dipole frequency in the
below-threshold case (for which the oscillations around
the equilibrium are small). In contrast, the spectrum
should be rich in higher order harmonics in the above-
threshold regime, for which the electron gas explores the
nonlinear part of the confining potential.

This behavior was indeed observed in the frequency
spectrum of the radiated power, which is plotted in Fig.
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FIG. 9: Color online. Critical electric field amplitude (atomic
units) for a gold cluster with N = 200 as a function of the

frequency sweep rate α3/4. The theoretical law (red straight
line) is well recovered.
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FIG. 10: Frequency spectrum of the total power radiated by
the electron gas in a gold cluster with N = 200, for two
cases: below the autoresonance threshold (a) and above the
threshold (b). These two cases correspond to the excitations
described in Fig. 8a and b.

8 for two cases. Below threshold (Fig. 8a), as expected,
the signal is concentrated around 2Ωd [the factor two
comes from the square of the dipole acceleration in Eq.
(37)]. Above threshold (Fig. 8b), several higher-order
harmonics are clearly observed.

Such difference in the observed spectrum could in prin-
ciple be used as an experimental signature to assess the
effectiveness of the autoresonant excitation.
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VI. CONCLUSION

In this paper, we proposed a simple model for the elec-
tron response in a metal cluster using a set of quantum
hydrodynamic (QHD) equations. Despite its apparent
simplicity, the model contains virtually all relevant elec-
tronic effects: (i) the mean-field Hartree potential; (ii)
exchange effects (both LDA and gradient corrections);
(iii) correlation effects (through a suitable functional);
(iv) quantum statistical effects (through the degeneracy
or Fermi pressure); and (v) quantum diffraction effects
(via the Bohm potential). The ions were represented by
a motionless profile of positive charge (jellium model).

The QHD equations can be expressed through a La-
grangian density, which in turn – by assuming a certain
Ansatz on the electron density – can be used to derive
a simple Lagrangian function that depends only on two
parameters: the center of mass of the electron gas d(t)
and the thickness of the spill-out effect σ(t). The study
of the collective electron motion was thus reduced to a
system of two coupled differential equations, which can
easily be integrated numerically.

The model was validated against known results for the
ground state and the linear response, with good qualita-
tive agreement.

One of the advantages of the present approach is that
it is not restricted to the linear regime and can deal with
the nonlinear dynamics, albeit in a simplified way. As an
example of a nonlinear effect, we investigated the elec-
tron response to a laser excitation with slowly varying
frequency (autoresonant driving). It has been known
for a long time that the autoresonance mechanism can
be used to excite large-amplitude nonlinear oscillations.
Here, we show that this technique can be applied to the
electron dynamics in metal clusters.

Indeed, we observe that it is possible to strongly drive
the electron gas away from equilibrium and consequently
completely ionize the cluster on a timescale of the order
of 100 fs. As the ionization is very fast, we can expect
that the ions have not yet had time to move, so that the
jellium approximation should be valid. The nonlinear
electron motion results in a radiated power spectrum that
is considerable broad and may be used as an experimental
signature of the autoresonant ionization.

Acknowledgments. Labex NIE ?

APPENDIX A: DERIVATION OF THE
LAGRANGIAN

The starting point is the Lagrangian density (6), which
we can be rewritten, using Eq. (11), as

L = n

[
∂S

∂t
+

(∇S)2

2

]
+

(∇n)2

8n
+

3
10

(
3π2

)2/3
n5/3

− 3
4π

(
3π2

)1/3
n4/3 − β

(∇n)2

n4/3

+
(∇VH)2

8π
− ∇ · (VH∇VH)

4π
.

(A1)

The Lagrangian is obtained by integrating the above La-
grangian density over space

L =
−1
N

∫
Ldr,

= − 1
N

[ ∫
n

∂S

∂t
dr

︸ ︷︷ ︸
1

+
1
2

∫
n (∇S)2 dr

︸ ︷︷ ︸
2

+
1
8

∫
(∇n)2

n
dr

︸ ︷︷ ︸
3

+
3
10

(
3π2

)2/3
∫

n5/3dr
︸ ︷︷ ︸

4

− 3
4π

(
3π2

)1/3
∫

n4/3dr
︸ ︷︷ ︸

5

−β

∫
(∇n)2

n4/3
dr

︸ ︷︷ ︸
6

+
1
8π

∫
(∇VH)2dr

︸ ︷︷ ︸
7

− 1
4π

∫
∇ · (VH∇VH)dr

]
. (A2)

The last integral is a surface term which is equal to zero
if the Hartree electric field vanishes at infinity.

The first step is to express the quantities ∂S/∂t, (∇S)2

and (∇n)2 as functions of the dynamical variables d(t),
σ(t) and of the shifted radial coordinate s. The fields n
and S are defined respectively by Eqs. (8) and (10). We
obtain

∂S

∂t
=

σ̈σ − σ̇2

2σ2
s2 − σ̇

σ
ḋ (z − d) + d̈ (z − d)− ḋ2,

(∇S)2 =
[
σ̇

σ

]2

s2 + 2
σ̇

σ
(z − d) ḋ + ḋ2,

(∇n)2 =
9a2s4

A2σ6
exp

[
2s3

σ3

]
n4.

Now, we are in a position to compute the integrals in the
Lagrangian (A2). We evaluate each term separately:



11

1.
∫

n
∂S

∂t
dr =

[
σ̈

2σ
− σ̇2

2σ2

] ∫
ns2dr +

[
d̈− σ̇

σ
ḋ

]

×
∫

n (z − d) dr− ḋ2

∫
ndr,

=
[

σ̈

2σ
− σ̇2

2σ2

] ∫
ns2dr−Nḋ2. (A3)

We used the symmetry properties of the electron
density to obtain the above expression. We further
compute
∫

ns2dr = A

∫
s2

1 + a exp (s3/σ3)
dr,

= 4πA

∫ ∞

0

X4

1 + a exp (X3/σ3)
dX,

= Nσ2M(a), (A4)

where M(a) is definesd as

M(a) = −Γ(5/3)Li5/3(−1/a)
ln(1 + 1/a)

.

Li is a polylogarithm function defined by

Lin(−1/a) = − 1
Γ(n)

∫ ∞

0

Xn−1

1 + a exp (X)
dX,

with Xe(n) > 0, Im(a) = 0 and 1/a > −1. Now we
can inject Eq. (A4) into Eq. (A3) to obtain

∫
n

∂S

∂t
dr =

N

2
M(a)

(
σ̈σ − σ̇2

)−Nḋ2,

=
N

2
M(a)

[
d

dt
(σσ̇)− 2σ̇2

]
−Nḋ2,

= −NM(a)σ̇2 −Nḋ2, (A5)

where we suppressed the total time derivative as it
does not modify the equations of motion.

2.

1
2

∫
n (∇S)2 dr =

1
2

[
σ̇

σ

]2 ∫
ns2dr +

σ̇

σ
ḋ

×
∫

(z − d)ndr +
ḋ2

2

∫
ndr,

=
N

2
M(a)σ̇2 +

N

2
ḋ2. (A6)

3.

1
8

∫
(∇n)2

n
dr =

9πa2A

2σ6

∫ ∞

0

X6 exp
(
2X3/σ3

)

[1 + a exp (X3/σ3)]3
dX,

=
NfB(a)

σ2
, (A7)

where fB is defined as

fB(a) =
27a2

8 ln(1 + 1/a)

∫ ∞

0

X6 exp
(
2X3

)

[1 + a exp (X3)]3
dX. (A8)

4.

3
(
3π2

)2/3

10

∫
n5/3dr =

6π
(
3π2

)2/3

5
A5/3

×
∫ ∞

0

X2

[1 + a exp (X3/σ3)]5/3
dX,

=
N5/3fF (a)

σ2
, (A9)

where fF is defined as

fF (a) =
6
5

(3π)2/3

[
3

4 ln(1 + 1/a)

]5/3

σ3

×
∫ ∞

0

X2

[1 + a exp (X3)]5/3
dX. (A10)

5.

3
(
3π2

)1/3

4π

∫
n4/3dr =

(
81π2

)1/3
A4/3

×
∫ ∞

0

X2

[1 + a exp (X3/σ3)]4/3
dX,

=
N4/3fX(a)

σ
, (A11)

where fX is defined as

fX(a) =
[

9
4
√

π ln(1 + 1/a)

]4/3

×
∫ ∞

0

X2

[1 + a exp (X3)]4/3
dX. (A12)

6.

β

∫
(∇n)2

n4/3
dr =

36πa2A2/3β

σ6

×
∫ ∞

0

X6 exp
(
2X3/σ3

)

[1 + a exp (X3/σ3)]8/3
dX,

=
βN2/3

σ
fX′(a), (A13)

where fX′(a) is defined as

fX′(a) =
(

4π

3

)1/3 27a2

[ln(1 + 1/a)]2/3

×
∫ ∞

0

X6 exp
(
2X3

)

[1 + a exp (X3)]8/3
dX. (A14)

7.

1
8π

∫
(∇VH)2dr =

1
8π

[ ∫
(∇Vi)2dr +

∫
(∇Ve)2dr

+2
∫
∇Vi · ∇Vedr

]
. (A15)
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The first integral in Eq. (A15) does not contribute
to the equations of motion because it does not de-
pend on the dynamical variables d or σ. Let us
evaluate the other two integrals separately:

∫
(∇Ve)2dr =

∫ [
∂Ve

∂s

]2

dr =
8πN

σ
fee(a), (A16)

where fee(a) is defined as

fee(a) =
1

2 [ln(1 + 1/a)]2

∫
dX

X2

{
X3 + ln(1 + a)

− ln
[
1 + a exp(X3)

]}
. (A17)

Let us call I(d) the third integral in Eq. (A15):

I(d) ≡
∫
∇Ve · ∇Vi (A18)

=
∫

∂Vi

∂r

∂Ve

∂s

1
sr

(r2 − zd)dr

=
2πN

ln(1 + 1/a)

∫
∂Vi

∂r

r2 sin θ

s3
(r − d cos θ)

×
{

s3

σ3
− ln

[
1 + a exp(s3/σ3)

]
+ ln(1 + a)

}
drdθ,

where we used the expressions (12) and (13), and
the angle θ is defined so that z = r cos θ. We cannot
simplify the integral I because it does not possess
spherical symmetry. The only way to proceed is to
develop the variable s =

√
x2 + y2 + (z − d)2 as a

power series of d:

s = r − d cos θ +
d2 sin2 θ

2r
+ O(d3).

We find that I can be written in terms of a power
series of d

I =
4πN2fei(σ)

R
− 2πNΩ2

d(σ)d2 + 4πNK(σ)d4 + · · · ,

(A19)
where fei(σ), Ω2

d(σ) and K(σ) are given by

fei(σ) =
1

ln(1 + 1/a)

{
σ2

R2

∫ R/σ

0

X
[
X3 + ln(1 + a)

− ln
(
1 + a exp

(
X3

)) ]
dX +

R

σ

∫ ∞

R/σ

dX

X2

[
X3

+ ln(1 + a)− ln
(
1 + a exp

(
X3

)) ]}
, (A20)

Ω2
d(σ) =

N

R3 ln(1 + 1/a)

{
R3

σ3
+ ln(1 + 1/a)

− ln
[
1 + a exp(R3/σ3)

] }
, (A21)

K(σ) =
9NRa

40 ln(1 + 1/a)σ6

exp(R3/σ3)
[1 + a exp(R3/σ3)]2

. (A22)

The odd powers of d disappears, as expected, be-
cause the problem is symmetric with respect to the
(x, y) plane, so that the equations should be un-
changed if we change d with −d.

Injecting Eqs. (A5), (A6), (A7), (A9), (A11),
(A13), (A16) and (A19) into Eq. (A2), we obtain
the Lagrangian of the system, Eq. (14), with the
pseudo-potential defined in Eq. (16).
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