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Abstract

We consider the nonlinear coupling between an exact vortex solution in a Bose-Einstein conden-

sate and a spectrum of elementary excitations in the medium. These excitations, or Bogoliubov-de

Gennes modes, are indeed a special kind of phonons. We treat the spectrum of elementary exci-

tations in the medium as a gas of quantum particles, sometimes also called bogolons. An exact

kinetic equation for the bogolon gas is derived, and an approximate form of this equation, valid

in the quasi-classical limit, is also obtained. We study the energy transfer between the vortex and

the bogolon gas, and establish conditions for vortex instability and damping.
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I. INTRODUCTION

The area of Bose-Einstein condensates (BEC), specially those produced with laser cooled

low density alkaline gases, has been explored in the last two decades in many different

directions [1, 2]. And the formation of vortices can be considered as one of their most

remarkable properties.

Vortices in BECs have been studied by many authors, in both experiments [3, 4] and

theory [1, 5]. Similarities with Rossby waves, as those existing in the rotating atmosphere

of planets, has also be explored [6]. Abrikosov arrays or latices of quantum vortices can

be excited, and display oscillations called Tkachenko modes [7, 8], as first observed by [9].

Rossby-Tkachenco modes, corresponding to general class of lattice oscillations, can also be

considered [10].

In this work, we consider the interaction of vortices with a spectrum of elementary excita-

tions in the medium. These excitations, or Bogoliubov-de Gennes (BdG) modes, are indeed

a special kind of phonons. We treat the spectrum of elementary excitations in the medium

as a gas of quantum particles, sometimes also called bogolons. This could be relevant to the

excitation of vortices in a turbulent BEC [11].

Starting from the usual BdG mode equations, we derive an equivalent wave-kinetic equa-

tion describing the evolution of an appropriate Wigner function. Wigner functions were

used in the past to describe the condensate itself [10]. But here the Wigner functions are

used to describe the BdG or bogolon modes, while both the background condensate and the

vortex are described with the usual mean field wave functions.

The vortex dispersion relation in the presence of an arbitrary bogolon spectrum is derived.

Conditions for the excitation and damping of vortices due to the presence of a BdG or

bogolon spectrum are established. Special cases are considered explicitly. The structure of

the paper is the following. In section II, we present the basic equations describing the BEC

in the mean field approximation. In section III, using the the auto-correlation function for

two distinct pairs of time and positions, the kinetic equation for the bogolon gas is derived.

Section IV focuses on the evolution of a single vortex in a turbulent background described

by the appropriate Wigner quasi-probability function. In section V the question of vortex

amplitude increase or damping is addressed in terms of the new kinetic theory. Finally in

section VI our conclusions are collected.
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II. BASIC FORMULATION

We describe the evolution of BEC using the mean field approximation. For that purpose,

we start with the GP equation, which can be written as

i~
∂

∂t
ψ =

(
H0 + g |ψ|2

)
ψ , H0 = −~2∇2

2m
+ U0(r) . (1)

Here we use the standard notation, where ψ is the condensate order parameter, U0(r) the

confining potential, and g the coupling constant. Let us assume a generic solution of the

form

ψ(r, t) =
[
ψ0(r, t) + ψ̃(r, t)

]
exp(−iµt/~) , (2)

where ψ0 describes the slow condensate field, and ψ̃ is a superposition of BdG modes. Here,

µ is the chemical potential. Replacing this in Eq. (1), and averaging over a time interval

much longer than the typical BdG mode period, we get for the slow condensate field

i~
∂ψ0

∂t
= [H0 + g(n0 + 2nT )− µ]ψ0 , (3)

where we have used the slow and fast densities, as defined by n0 = |ψ0|2 and the average of

turbulent fluctuations nT =
〈
|ψ̃|2

〉
. Here, we should notice that

〈
ψ̃
〉

= 0 and ψ0 ≡ 〈ψ〉.

Subtracting Eq. (3) from (1), we obtain for the fast component of the matter field

i~
∂ψ̃

∂t
=
(
Hr + g|ψ̃|2

)
ψ̃ + 2g

(
|ψ̃|2 − nT

)
ψ0 + g

(
ψ2

0ψ̃
∗ + ψ∗0ψ̃

2
)
. (4)

with the new Hamiltonian Hr = H0 + 2gn0(r)− µ. We should notice that we have, in this

equation, |ψ̃|2 = nT + δ|ψ̃|2, where nT is the slow part and δ|ψ̃|2 contains the high frequency

mixing of the BdG spectrum. Such spectrum can be explicitly described as

ψ̃(r, t) =
∑
k

[uk(r) exp(−iωkt) + v∗k(r) exp(iωkt)] , (5)

where each mode is identified by the quantity k, representing a set of discrete numbers of a

continuum of wavevectors, ωk are the eigenfrequencies, and the pair of functions uk(r) and

vk(r) are the corresponding BdG field components. Replacing this in Eq. (4), and neglecting

the nonlinear mode mixing terms, we get the usual BdG equations for each mode

(~ωk −Hr)uk = gψ2
0vk , (~ωk +Hr)vk = −(gψ2

0)∗uk . (6)
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In homogeneous condensates, and in a broad range of situations discussed in our previous

work [12], we can assume solutions that satisfy the equations ∇2(uk, vk) = −k2(uk, vk). We

can then easily solve eqs.(6) and derive the mode dispersion relation

~ωk =
√

(Hk + 2gn0 − µ)2 − (gn0)2 , (7)

with Hk = ~2k2/2m + U0(r). In the limit of very short wavelengths, we can neglect the

confining potential and set U0 = 0, as well as µ = gn0. We are then reduced to the well

known expression

ωk =

√
c2sk

2 +
~2k4

4m2
, cs =

√
gn0

m
(8)

Here cs is the Bogoliubov sound speed. A generalization of this dispersion relation to twisted

BdG modes in homogeneous, cylindrical and toroidal geometries can be found in [12]. At

this point we introduce uk = |uk| exp(iϕu) and vk = |vk| exp(iϕv). The mode energy, or

density, can then be written as

nk = |ψk|2 = |uk|2 + |vk|2 + 2|uk||vk| cos(ϕu − ϕv) (9)

For mode components in quadrature, we have cos(ϕu − ϕv) = 0, and symmetry arguments

imply that |uk|2 = |vk|2. At this point, it should be noticed that eqs. (6) can be reduced to[
~2ω2

k − (H2
r − |gψ2

0|2)
]
uk = 0 . (10)

It is useful to introduce the new quantities

Uk(r, t) = uk(r) exp(−iωkt) , Vk(r, t) = vk(r) exp(−iωkt) . (11)

They obviously satisfy the wave equation(
∂2

∂t2
− ω2

k

)
(Uk, Vk) = 0 , (12)

where ωk is determined by Eq. (8). This will be useful in the study of the nonlinear coupling

between the BdG modes (or bogolons) and a vortex, as shown next.

III. KINETIC EQUATION FOR THE BOGOLON GAS

In order to study the energy transfer between a slowly varying perturbation, more specif-

ically, a single vortex, and a background spectrum of turbulent fluctuations, we use for the
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slow component of the condensate wavefunction

ψ0(r, t) = ψ00(r) + ψv(r, t) , (13)

where the first term is the steady-state part of the condensate, and ψv is the disturbance

associated with the vortex. We now have

|ψ0|2 = n0 + ψ00ψ
∗
v + ψ∗00ψv , n0 = |ψ00|2 + |ψv|2 . (14)

We notice that, for U0 = 0 and µ = gn0, we have

H2
r − |gψ2

0|2 = −~2∇2

2m

(
−~2∇2

2m
+ gn0

)
+ 2g2n0 (ψ00ψ

∗
v + ψ∗00ψv) . (15)

This means that, in a condensate perturbed by a vortex ψv, the BdG or bogolon mode can

be described by [
∂2

∂t2
−
(
gn0 −

~2∇2

2m

)
∇2

2m
−G

]
(Uk, Vk) = 0 , (16)

with the auxiliary function G ≡ G(r, t) defined by

G = 2
g2n0

~2
(ψ00ψ

∗
v + ψ∗00ψv) . (17)

It can easily be seen that this mode equation reduces to be above Eq. (12) when the

vortex disappears and ψv = 0. This perturbed mode equation has now to be coupled to the

evolution equation for the vortex field ψv, which in turn will depend on the mode functions

(Uk, Vk), as shown below.

But, before considering the vortex equation, it is useful to replace Eq. (16) by a wave-

kinetic equation capable of describing an arbitrary superposition of BdG modes, or in other

words, an arbitrary bogolon gas. For that purpose, we follow the standard Wigner-Moyal

procedure [10], focusing on the field Uk, given the symmetry with Vk. We start by introducing

the auto-correlation function for two distinct pairs of time and positions, as defined by

K12 = Uk(r1, t1)U
∗
k (r2, t2) ≡ U1U

∗
2 . (18)

From Eq. (16) we obtain the evolution equation for this quantity as[
∂2

∂t21
− ∂2

∂t22
+ c2s

(
∇2

1 −∇2
2

)
− ~2

4m2

(
∇4

1 −∇4
2

)
+G1 −G2

]
K12 = 0 , (19)
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where we have used the obvious notation Gj ≡ G(rj, tj), for (j = 1, 2). We now define new

pairs of space variables r = (r1 +r2)/2, and s = r2−r2, and similarly for time t = (t1 +t2)/2,

and τ = t2 − t1, and introduce the double Fourier transformation

K12 ≡ K(r, t, s, τ) =

∫
dk

(2π)3

∫
dω

2π
W (r, t,k, ω) exp(ik · s− iωτ) . (20)

The new function W ≡ W (r, t,k, ω) is the Wigner function for the BdG field. Replacing

this in Eq. (19) we are then able to derive the following equation determining the evolution

of W (
∂

∂t
+ vk · ∇

)
W =

1

ω
G sin (ΛW ) . (21)

This is the wave-kinetic equation for the bogolon field, as described by the Wigner function

W . Here, we have used the bogolon group velocity vk, as determined from the above

dispersion relation

vk =
∂ωk
∂k

=

(
c2s +

~2k2

2m2

)
k

ω
. (22)

In Eq. (21) we have also used the double-sided operator

Λ =
1

2

(
←−
∇ ·
−→
∂

∂k
−
←−
∂

∂t

−→
∂

∂ω

)
, (23)

where
←−
∇ and

←−
∂ /∂t act backwards on G, whereas

−→
∂ /∂k and

−→
∂ /∂ω act forward on W . We

can considerably simplify this equation by assuming the quasi-classical or geometric optics

approximation ,where the bogolons can be described as classical quasi-particles. In this

limit we can use sin Λ ' Λ. The wave-kinetic equation (21) can also be written in another

equivalent form, as

i

(
∂

∂t
+ vk · ∇

)
W =

1

2ω

∫
dq

(2π)3

∫
dΩ

2π
G(Ω,q)[W− −W+] exp(iq · r− iωt) . (24)

In this new equation we have used the quantities W± ≡ W (ω ± Ω/2,k ± q/2), and the

Fourier components

G(Ω,q) =

∫
dr

∫
dtG(r, t) exp(−iq · r + iωt) (25)

The quasi-classical approximation can be recovered by using the development

W± ' W ± Ω

2

∂W

∂ω
± k

2
· ∂W
∂k

(26)
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To complete our discussion of the wave-kinetic description of the BdG mode field, we assume

that the frequency ωk of each mode k is determined by its linear dispersion relation. This

approximation is sometimes called the particle approximation, and justifies the use of a

reduced Wigner function, defined as

W (r, t,k) = 2πW (r, t,k, ω)δ(ω − ωk) (27)

This reduced form of W will be used in the following. It is also useful to state that the

wave-kinetic in the geometric optics limit reduces to a Vlasov-type of equation, which takes

the form (
∂

∂t
+ vk · ∇+ Fk ·

∂

∂k

)
W = 0 , (28)

where Fk = −∇(G/2ωk) plays the role of a force acting on the BdG quasi-particles.

IV. VORTEX IN A BOGOLON FIELD

We consider now the evolution of a vortex in a turbulent background, as described by the

Wigner quasi-distribution W (r, t,k). For simplicity, we use the geometric optics approxima-

tion. Generalization to the exact wave-kinetic description involves an heavier description,

but is straightforward. The turbulent gas of bogolons is then described by Eq. (28), while

the vortex is described by Eq. (3). At this point, it should be noticed that

nT ≡
〈
|ψ̃|2

〉
=

∫
W (r, t,k)

dk

(2π)3
. (29)

Using Eq. (13), this allows us to rewrite Eq. (3) in the new form

i~
∂ψv
∂t

= [H0 + gn0 − µ] Ψv + 2gψ00

∫
W (r, t,k)

dk

(2π)3
. (30)

We can also assume that the static mean field ψ00 is determined by the condition,

[H0 + gn0 − µ]ψ00 = 0. This will determine the Thomas-Fermi density profile. We have

also neglected the ψv contribution to the last term of In Eq. (30), which is valid for the

perturbative analysis to be discussed here. For the nonlinear saturation regime, this contri-

bution would have to be included.

At this point, we assume a generic vortex solution of the form ψv(r, t) = Ψ(r) exp(−iΩt).

We can also write, for the bogolon gas distribution, W (r, t,k) = W0(r) + δW (r, t,k), where
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δW (r, t,k) = Wv(r,k) exp(−iΩt) is the perturbation of the bogolon gas, induced by the

presence of the vortex. Replacing this in Eq. (30), we get

~ΩΨ = [H0 + gn0 − µ] Ψ + 2gψ00

∫
Wv(r,k)

dk

(2π)3
. (31)

In order to derive a closed equation for the quantity Ψ, we need to relate Wv to Ψ, which

can be done with the wave-kinetic equation (28). Noting that

Fk = − g

2ωk
ψ∗00∇Ψ , (32)

we obtain

(−iΩ + vk · ∇)Wv =
g

2ωk
ψ∗00∇Ψ · ∂W0

∂k
. (33)

To proceed further, we take the plausible assumption that the spatial structure of Wv has

the same shape of the vortex itself, which allows us to write Wv(r,k) = Ψ(r)Av(r,k). The

last term in Eq. (31) becomes equal to

2gψ00

∫
Wv(r,k)

dk

(2π)3
= −g2|ψ00|2ΨQ ·

∫
(∂W0/∂k)

ωk(iΩ− vk ·Q)

dk

(2π)3
. (34)

Here, we have introduced the new vector function Q ≡ Q(r), such that Q = ∇Ψ/Ψ.

Similarly, Eq. (33) can be written in terms of the quantity Av, as

Av(r,k) = − g

2ωk
ψ∗00Q ·

(∂W0/∂k)

(iΩ− vk ·Q)
. (35)

It is useful to notice that, in the absence of bogolon turbulence, the vortex solution would

imply that Ω = µ/~. The vortex solution would therefore be determined by the simple

equation

[H0 + gn0 − 2µ] Ψ(r) = 0. (36)

For a vortex around the z-axis, the corresponding solution would therefore be of the form

Ψ(r) = R(r)Φ(z) exp(ilθ), where the integer l is the vortex charge, and cylindrical coordi-

nates were used. The presence of turbulence introduces an energy correction to the vortex,

ε, as determined by

~Ω = µ+ ε (37)

Assuming that Eq. (36) is still satisfied, we can reduce Eq. (31) to

εΨ = 2gψ00

∫
Wv(r,k)

dk

(2π)3
. (38)
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Finally, using Eq. (30), and integrating over the entire volume V of the condensate, we

obtain

ε = −g
2

V

∫
V

drn00(r)Q ·
∫

dk

(2π)3

(∂W0/∂k)

ωk(iΩ− vk ·Q)
. (39)

This is the main result of the present paper. It gives the energy correction to the vortex due

to the presence of an arbitrary spectrum of BdG turbulence, as described by the unperturbed

Wigner function W0.

V. VORTEX STABILITY

We can now analyze the problem of vortex stability and the possible exchange of energy

between the vortex and the bogolon spectrum of elementary excitations. First, we notice

that the vector function Q(r) can be written in a more explicit form as

Q ≡ ∇Ψ

Ψ
=

er
Lr

+
ez
Lz

+ il
eθ
r
, (40)

with

L−1
r =

1

R

dR

dr
, L−1

z =
1

Φ

dΦ

dz
, (41)

where R(r) and Φ(z) define the unperturbed form of the vortex. As a simple example, let

us consider the case where all the BdG modes propagate along the z-axis, as described by

the simple Wigner function W0(k) = (2π)2W0(kz)δ(k⊥). Eq. (39) is then reduced to

ε = −g
2

V

∫
V

drn00(r)

∫
dkz
2π

(∂W0/∂kz)

ωk(iΩLz − vk)
. (42)

Let us now focus on the imaginary part of this energy correction, Γ = =(ε) = =(Ω), which

describes the possible occurrence of an instability. We get

Γ =
g2

V

∫
V

drn00(r)

∫
dkz
2π

µLz
ωk

(∂W0/∂kz)

(ΓLz + vk)2 + µ2L2
z

. (43)

For a nearly homogeneous condensate with n00(r) ' n0 = cte., and for µLz � (ΓLz, vk),

this can be approximately written as

Γ ' g2n0

µV

∫
V

dr

Lz

∫
dkz
2π

1

ωk

∂W0

∂kz
. (44)

And, using the Bogoliubov dispersion relation, we finally get

Γ ' g2n0

µV
cs

∫ ∫
Lz(r)

ω2
k

W0(r, kz)
dkz
2π

dr . (45)
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This result clearly shows that, in the condensate regions where the turbulence is present,

and if Lz < 0, we have damping of the vortex due to its interaction with the phonons. It

means that the phonons tend to gain energy. In contrast, if Lz > 0, the vortex grows at the

expense of the turbulence energy. In a vortex with a finite size, this can be summarized by

saying that the phonons will damp the vortex at the vortex front (where Lz decreases) and

will excite the vortex at the rear. In both cases, the vortex will become unstable,

and eventually decay into other vortex solutions, with emission or absorption of

bogolons. The final result of the instability cannot be described by the present

linear stability analysis. Only in the case of Lz = 0 can we strictly say that the

vortex remains stable in the presence of turbulence. This will be the case of a

vortex aligned with the z-axis.

But we can also consider vortices with finite curvature, as those discussed

in detail by [22, 23], and shown in Fig. 1. It obviously has Lz > 0 for z < 0,

and Lz < 0 for z > 0. We can see from eq. (45) that such a curved vortex will

remain stable if immersed in homogeneous turbulence (Fig. 1a), and become

unstable under the action of inhomogeneous turbulence, as illustrated in Fig.

1b. A variety of situations can therefore occur where the value and sign of Γ will depend

on the configuration of the bogolon spectrum, as defined by W0(r, kz), and on the way it

occupies the vortex volume.

Finally, we would like to notice that the vortex itself will be forced to move

due to existence of turbulence. Adapting the analysis of [23] to the present

problem, we can easily conclude that the local velocity v(r) of a vortex line in

the presence of an arbitrary bogolon distribution W0(r, kz) is given by

v(r) =
3l~

2mµ
ln

(
R⊥
|l|ξ

)
(êz ×∇⊥)

∫
W0(r,k)

dk

(2π)3
. (46)

Here R⊥ represents the condensate dimensions in the perpendicular direction,

and ξ is the healing length. This expression is valid for a vortex with week

curvature, if we neglect the confining potential. The evolution of a vortex in the

bogolon gas will eventually modify the present stability analysis.
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FIG. 1: Vortex with a finite curvature in a bogolon gas. The vortex line is represented, as well as

the condensate region occupied by turbulence: (a) stable configuration in homogeneous turbulence;

(b) Unstable configuration when the bogolon gas only covers part of the condensate volume.

VI. CONCLUSIONS

We have studied the vortex-phonon interactions in a Bose-Einstein condensate. We have

considered the case where a single vortex interacts with an arbitrary spectrum of elementary

excitations, or BdG modes, which we have associated with a bogolon field. Starting from a

generic form of BdG equations, we have derived a wave-kinetic equation which determines

the evolution of the bogolon field. The field is described by a Wigner function. Exact
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and approximate versions of the wave-kinetic equation where stated. In the quasi-classical

approximation, the field can be described as a gas of quasi-particles, the bogolons, which

correspond to phonons propagating in a condensed quantum gas. In this case, the wave-

kinetic equation reduces to a Vlasov-type of equation, and the Wigner quasi-distribution

reduces to a classical distribution function.

Using a perturbative analysis we were then able to derive the growth rate of a vortex in the

turbulent field, and characterized the possible regimes where instability can eventually take

place. The present analysis shows that, in general, a finite exchange of energy takes place

between a vortex and the surrounding oscillations, which could be useful to future analysis of

simulations and experiments. The present stability analysis is valid in the geometric optics or

quasi-classical approximation, where the typical wavelength of the bologons is much smaller

than the size of the vortex. But the same approach can be used for the general case, if instead

of the Vlasov equation we use the exact wave-kinetic equations for the bogolon field. We

have also called the attention to the possible existence of vortex motion in the

presence of turbulence, which will eventually modify the vortex stability. The

possible existence of stable vortex-bogolon configurations is a very interesting

but difficult problem, which will be analyzed elsewhere.
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