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Abstract

Confined atomic clouds in a magneto-optical trap can be formally interpreted as a single compo-

nent trapped plasma. An hydrodynamical model in a three-dimensional geometry with radial sym-

metry is applied. A general polytropic equation of state is assumed. For suitable initial conditions

and velocity fields, the Lagrangian variables method reduces the problem to ordinary differential

equations in the limiting cases according to the prevalence of thermal or multiple-scattering ef-

fects. The thermal, pressure dominated case with adiabatic equation of state leads to a dissipative

nonlinear oscillator with an inverse cubic force, in the form of a damped Pinney equation. An

accurate approximate analytic solution derived from Kuzmak-Luke perturbation theory allows the

assessment of the fully nonlinear dynamics. The applicability conditions of the two regimes are

discussed. The intermediate case where both thermal and multiple-scattering effects are equally

relevant is also analytically studied.

PACS numbers: 02.30.Hq, 05.70.Ce, 37.10.Gh, 47.10.Fg, 51.30.+i

Keywords: trapped cold atoms, exact nonlinear oscillations, Lagrangian variables, Pinney equation, tem-

perature limited conditions, magneto-optical trap, multiple-scattering regime.
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I. Introduction

Among the most successful techniques to produce large samples of optically confined cold

atoms are the magneto-optical traps (MOTs), which consist of the intersection of three pairs

of orthogonal oppositely circularly polarized beams with a spatially varying magnetic field

[1, 2]. Such confinements involve the joint effects of the magnetic trapping and the Doppler

cooling mechanisms [3, 4]. MOTs are essential in the realization of optical lattices [5, 6],

Bose-Einstein condensates [7], observation of collective quantum effects [8] and in atomic

clocks performance enhancement [9, 10]. The dynamics of cold trapped gases in a MOT

share many similarities with confined non-neutral plasmas such as an antiproton gas in a

Penning-Malmberg trap cooled to extremely low temperatures [11] and a closer analogy

with astrophysical models for pulsating stars [4, 12]. The optical cooling and trapping of

highly magnetic atoms [13], the self-induced electron trapping in freely expanding ultra-cold

plasmas [14] and the coherent excitation of Rydberg states in cold atomic gases [15] also

show the timeliness and a broad interest on complex phenomena in MOTs. Previous studies

rely on linear approximation [16–18] or purely numerical [19] analysis. In the stationary

case, a first analytical attempt was made by means of a Taylor series technique [20]. Here

we provide an alternative solution method allowing the assessment of the nonlinear and

time-dependent dynamics, using Lagrangian variables.

At the low saturation regime, a confined atomic cloud in a MOT can be formally inter-

preted as a single component trapped plasma, corresponding to an effective weak charge

qeff ∼ 10−4e to 10−6e, where e is the elementary charge [21]. Such similarities makes pos-

sible to apply to MOTs well known hydrodynamical models from plasma physics [16–18].

In this context, we will consider nonlinear time-dependent structures derived by means of

the Lagrangian coordinates method [22–24]. Lagrangian variables are recognized as effective

in fluid problems and have been recently applied e.g. for the derivation of nonlinear waves

in one-dimensional degenerate electron gases [25] and large amplitudes oscillations of single

component trapped plasma with collisional drag [26]. Hence we transform from Eulerian

variables to comoving fluid coordinates.

In the hydrodynamic model, the repulsive collective force and the pressure term tend to

produce expansion, while an external gradient field provides harmonic confinement. Due

to the Doppler cooling, the model also has a damping term. Experiments with MOTs are
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usually performed in the temperature-limited (TL) regime or in the the multiple-scattering

(MS) regime, that dominates the long range interactions. These cases depend upon the

number of confined atoms. Measurements of the angular frequency, damping coefficient,

temperature and size of the cloud have been made with trapped cesium and rubidium in both

situations [1, 27–32]. Achieving the TL regime is an important step towards the observation

of collective quantum effects, since in the MS regime the number density remains invariant

under addition of atoms [3].

In this context two basic situations will be considered, according to the prevalence of

thermal effects (for lower densities) or long range interactions (for higher densities). The

precise conditions for the two limiting cases have to be evaluated in terms of the physical

parameters. However, in an intermediate case between the isothermal and adiabatic regimes,

analytical conclusions are also accessible in the mixed TL + MS situation, as described in

II.C. As remarked in [20], it is appropriate to consider MOT confinements under diverse

equations of state. Therefore, we assume a general polytropic equation of state, which is

useful for most experimental setups. Our treatment is restricted to traps with perfectly

aligned lasers so that we will consider systems with radial symmetry. However, the method

can be advanced for stable structures with misalignment in the xy-plane [31, 33].

This work is organized as follows. Section II introduces the basic set of hydrodynamic

equations and the transformation to Lagrangian variables. Accordingly, in II.A we develop

the full solution when thermal effects are dominant over the multiple-scattering effects and

provides the precise applicability conditions of the solution in terms of the relevant physical

parameters. In II.B we perform the same treatment in the opposite case of the MS regime,

while in II.C the intermediate regime is developed. Section III discuss the conditions for

applicability of the diverse solutions. Section IV is reserved to the conclusions.

II. Basic model and Lagrangian variables method

In a three-dimensional geometry with radial symmetry, the dynamics of a cold trapped

gas in a MOT can be described by the following hydrodynamic equations

∂n

∂t
+

1

r2
∂

∂r
(r2nv) = 0 , (1)

∂v

∂t
+ v

∂v

∂r
= − 1

mn

∂P

∂r
− ω2r − νv +

Fc

m
, (2)
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1

r2
∂

∂r
(r2Fc) = Qn , (3)

where Eqs. (1-3) are respectively continuity, momentum and Gauss law equations. By

definiteness, the system is composed by cold atoms (atomic mass m) with a number density

n, fluid velocity with radial component v and pressure P . The simplest model to describe the

MOT force, which originate from the Zeeman shift and the Doppler cooling, is the Doppler

model at low saturation limit, which is given when the incident on-resonance saturation

parameter per beam sinc << 1. This parameter describes the ratio between the incident

lasers intensities and their saturation value. In this context, the average forces acting on

a single moving atom are based on the quasi-resonant radiation pressure which, due the

gradient magnetic field and the three pairs of beams, can be described, respectively, as an

harmonic force with angular frequency ω and a dissipative force with damping coefficient ν.

For that reason, the confinement is provided by the Zeeman shift and the damping force by

the Doppler cooling. In this model, assuming symmetric forces [16–18, 20],

ν = − 8h̄k2
Lsinc∆

mΓ(1 + 4∆2/Γ2)2
, ω = (νµ/kL)

1
2 , (4)

where kL is the amplitude of the laser wave vector, h̄ is the reduced Planck constant, ∆ is the

frequency detuning between the laser frequency and the atomic transition frequency and Γ

is the natural line width of the transition used in the cooling process. Also, µ = µB|∇B|/h̄,

with µB being the Bohr magneton and |∇B| the intensity of the gradient field, assumed to

be symmetric in all directions. In MOTs the red detuning (∆ < 0) is used, so that ν > 0.

In addition, Fc is the radial collective force satisfying Eq. (3). The constant Q =

(σR − σL)σLI0/c is associated with the squared effective charge of the atoms, with c being

the speed of light and I0 the total intensity of the six laser beams, while σR and σL represent

the emission and absorption cross sections respectively. More precisely [34], the connection

between Q and an effective charge qeff is given by Q = q2eff/ϵ0, where ϵ0 is the vacuum per-

mittivity. The collective force is a contribution of two parts, the first one being the gradient

of the incident laser intensity which gives rise an attractive force. This attractive force arises

from in the imbalance of absorption of the light, since the intensities of the backward and

forward are locally different. The second contribution is a repulsion force due the radiation

pressure of scattered photons on nearby atoms. Light rescattering between atoms produces a

repulsive interaction as a photon scattered from one atom tends to push away nearby atoms
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[2]. In typical experiments [21] the repulsion dominates over the attractive force (Q > 0).

For the sake of definiteness we assume a polytropic equation of state P = n0kBT (n/n0)
γ,

where γ is a generic polytropic index, n0 is a reference number density and kBT is a reference

thermal energy, where kB is the Boltzmann constant. For definiteness, we restrict to γ ≥ 1.

From a more fundamental point of view, collective phenomena in cold gases can be treated

by means of kinetic theory, in terms of the Fokker-Planck equation for the probability distri-

bution function. As described in [35], the diffusive term in the Fokker-Planck equation can

be neglected provided the laser light is so intense so that the effects of absorption and radia-

tion trapping forces dominate over photon exchange with the cooling laser. In this situation,

the kinetic equation reduces to the Vlasov equation. Taking moments of the distribution

function, one arrives to hydrodynamic equations for the macroscopic quantities, which can

be closed assuming an equation of state [16–18, 35]. The drawback of the hydrodynamic

approach is the loss of detailed information which is needed for kinetic effects such as Landau

damping and kinetic instabilities. On the other hand, the treatment of nonlinear structures

can be simpler within fluid models. We also remark that, below the critical temperature,

the atomic boson gas presents a phase transition, so that both normal and condensed phases

coexist. In this case a mean field theory for the condensed phase could be set up e. g. in

terms of the Gross-Pitaevskii equation for the macroscopic condensate wave function [36].

However, the present work focuses on the nonlinear dynamics of the trapped cold gas, which

is in a previous step towards Bose-Einstein condensation.

In order to derive arbitrary-amplitude solutions for the system (1)-(3), we introduce

Lagrangian coordinates (ξ, τ), given [22–24] by

ξ = r −
∫ τ

0

v(ξ, τ ′) dτ ′ , τ = t , (5)

such that
∂

∂τ
=

∂

∂t
+ v

∂

∂r
,

∂

∂ξ
=

(
1 +

∫ τ

0

∂

∂ξ
v(ξ, τ ′) dτ ′

)
∂

∂r
. (6)

The continuity equation (1) is then converted into

∂

∂τ

[(
1 +

∫ τ

0

∂

∂ξ
v(ξ, τ ′)dτ ′

)(
ξ +

∫ τ

0

v(ξ, τ ′)dτ ′
)2

n

]
= 0 , (7)

with solution

n(ξ, τ) =
n(ξ, 0)ξ2

(1 +
∫ τ

0
∂
∂ξ
v(ξ, τ ′)dτ ′)(ξ +

∫ τ

0
v(ξ, τ ′)dτ ′)2

, (8)
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where n(ξ, 0) is the atomic cloud number density at τ = 0.

The Gauss law Eq. (3) in transformed coordinates is

∂

∂ξ

[(
ξ +

∫ τ

0

v(ξ, τ ′)dτ ′
)2

Fc

]
= Qn(ξ, 0)ξ2 . (9)

After solving Eq. (9) for Fc, the only remaining equation to be solved is the momentum

transport Eq. (2), which becomes

∂v

∂τ
=− γkBT

m

(
1 +

∫ τ

0

∂

∂ξ
v(ξ, τ ′)dτ ′

)−1(
n

n0

)γ−2
∂

∂ξ

(
n

n0

)
− ω2

(
ξ +

∫ τ

0

v(ξ, τ ′)dτ ′
)
− νv

+
ω2
p

∫ ξ

0
n(ξ′, 0)ξ′2dξ′

n0(ξ +
∫ τ

0
v(ξ, τ ′)dτ ′)2

. (10)

where ωp = (n0Q/m)1/2 is the plasma frequency for a reference number density n0.

There are two manifest repulsion terms in Eq. (10). One of them is the pressure term

proportional to kBT and the another one is due to the collective force, proportional to ω2
p/n0.

These repulsion effects are counterbalanced by the ∼ ω2 in the right-hand side of Eq. (10),

which provides the confinement.

Equation (10) can be simplified if we suppose a linear velocity field

v = ρ̇ξ , (11)

where ρ = ρ(τ) is at this stage an arbitrary function, and where a dot denotes derivative

with respect to τ . Without loss of generality, we set ρ(0) = 1. Incidentally, the choice gives

ξ = r/ρ(τ). Moreover, from Eq. (9) we get

∂

∂ξ
(ξ2 Fc) =

Qn(ξ, 0)ξ2

ρ2
, (12)

solved to

Fc =
Q

ρ2ξ2

∫ ξ

0

n(ξ′, 0)ξ′2dξ′ , (13)

with Fc(0, τ) = 0. To avoid singularities, we must enforce ρ(τ) > 0.

Inserting Eq. (11) into Eq. (8), we get

n =
n(ξ, 0)

ρ(τ)3
. (14)

It is also useful to have an expression of the total number N of confined atoms, which is

N = 4π

∫ ∞

0

n(ξ, 0)ξ2dξ . (15)
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Inserting v from Eq. (11) and n from Eq. (14) into Eq. (10), the result is

(ρ̈+ νρ̇+ω2ρ)ρ3γ−2 = −γkBT

mξ

(
n(ξ, 0)

n0

)γ−2
d

dξ

(
n(ξ, 0)

n0

)
+

ω2
p

n0

ρ3γ−4
∫ ξ

0
n(ξ′, 0)ξ′2dξ′

ξ3
. (16)

The left-hand side of Eq. (16) is a function of τ only, while on the right-hand side the first

term is a function of ξ only and the second term is a separable function of both variables.

Deriving all terms in Eq. (16) once with respect to ξ and once with respect to τ gives

ω2
p

d

dτ
(ρ3γ−4)

d

dξ

(∫ ξ

0
n(ξ′, 0)ξ′2dξ′

ξ3

)
= 0 . (17)

When the collective force can not be neglected, this gives restrictive conditions, namely:

either γ = 4/3 (for non-constant ρ), or the term on the second bracket of Eq. (17) must be

a constant, implying a constant n(ξ, 0). Hence, restricting to the more interesting situation

where neither ρ(τ) nor n(ξ, 0) are constants, there are only three possibilities: (a) in the TL

case where the ∼ ω2
p term can be neglected compared to the pressure term, the left-hand

side of Eq. (16) should be balanced by the first term on the right-hand side therein. In this

situation Eq. (17) is irrelevant; (b) in the MS case where the pressure term can be neglected,

the left-hand side of Eq. (16) should be balanced by the ∼ ω2
p term; (c) if γ = 4/3, the whole

right-hand side of Eq. (16) becomes a function of ξ only. In this situation both temperature

and collective force effects can be maintained. The three possibilities will be analyzed in

separate.

A. Temperature-limited (TL) regime

Disregarding the collective force shows that both the left and right-hand sides of Eq. (16)

must be a constant, or

(ρ̈+ νρ̇+ ω2ρ)ρ3γ−2 = −γkBT

mξ

(
n(ξ, 0)

n0

)γ−2
d

dξ

(
n(ξ, 0)

n0

)
= ω2

TL , (18)

so that
d2ρ

dτ 2
+ ν

dρ

dτ
+ ω2ρ =

ω2
TL

ρ3γ−2
, (19)

where ω2
TL > 0 is a constant taken as positive to avoid ρ = 0 in a finite time. By inspection

it is possible to identify the general equilibrium solution ρ = ρeq, wherein ρ̇ = ρ̈ = 0, given

by

ρeq =

(
ω2
TL

ω2

) 1
3γ−1

. (20)
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The spatial part of Eq. (18) separates into two classes, according to the value of γ.

Case I: γ > 1

When γ > 1, setting ω2
TL = 2γkBT/[m(γ − 1)ξ20 ] gives from Eq. (18),

n(ξ, 0) = n0

(
1−

(
ξ

ξ0

)2) 1
γ−1

, ξ ≤ ξ0 , (21)

where ξ0 is a reference length. For ξ ≥ ξ0 we set n(ξ, 0) = 0. Since the more interesting

physics takes place inside the atomic cloud, we will mainly discuss the problem restricted to

ξ ≤ ξ0. We have assumed n(0, 0) = n0, which is the definition of n0. From Eqs. (15) and

(21), we get

N = n0 (
√
π ξ0)

3
Γ
(

γ
γ−1

)
Γ
(

5γ−3
2(γ−1)

) , (22)

where Γ is the Gamma function. Equation (22) can be viewed as a tool to determine the

cutoff ξ0, given the total number of particles, the number density at ξ = 0 and the polytropic

index.

For the sake of illustration, we set γ = 5/3, which corresponds to the usual tridimensional

adiabatic coefficient. In this case, the Eq. (19) reads

d2ρ

dτ 2
+ ν

dρ

dτ
+ ω2ρ =

ω2
TL

ρ3
, (23)

which is an autonomous Pinney equation [37] with a damping term, where ω2
TL = 5kBT/mξ20 .

The Pinney equation is endemic in applied mathematics, appearing in cosmology [38, 39],

magnetogasdynamics [40], quantum plasmas [41] Bose-Einstein condensates [42], dissipative

quantum mechanics models [43] and many other contexts.

The undamped case (ν = 0) was solved by Pinney [37], including a time-dependent

frequency ω = ω(t), in terms of the linearly independent solutions of the associated Hill

equation. Due to the Doppler cooling, the present model becomes a dissipative Pinney

equation [44]. It happens that the damped Pinney Eq. (23) admits an accurate approximate

solution, derived from Kuzmak-Luke perturbation theory [45, 46], which is an appropriate

tool for weakly damped nonlinear oscillator problems [47]. From Eq. (26) of [44], the solution

reads

ρ2 = ρ2eq + 2A2e−ντ + 2Ae−ντ/2
(
ρ2eq + A2e−ντ

)1/2
cos (2ω(τ − τ0)) , (24)

where A, τ0 are integration constants. As detailed in [44], a weak damping assumption,

namely ν << ω, should be valid for the accuracy of Eq. (24). In the undamped case (ν = 0),
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Eq. (24) shows an exact oscillatory solutions in the interval I = {ρ > 0 |
√

ρ2eq + A2 − |A| ≤

ρ ≤
√

ρ2eq + A2 + |A|}, with the parameter |A| playing the rôle of an initial amplitude.

Moreover, since ν/ω ≪ 1, during one oscillation period τ = π/ω the quantity |A| exp(−ντ/2)

does not change very much and plays the rôle of a slowly varying time-dependent amplitude.

Notice that from Eq. (20) one has that ρeq = (5kBT/mω2ξ20)
1
4 .

Also from Eq. (24) setting ρ(0) = 1 implies

τ0 =
1

2ω
arccos

(
1− ρ2eq − 2A2

2A (ρ2eq + A2)1/2

)
, (25)

making sense if and only if A2 ≥ (1− ρ2eq)
2/4, to avoid cos2(2ωτ0) > 1, which can be shown

to be equivalent to ρ = 1 ∈ I, as discussed in [26]. Besides, taking into account Eq. (25),

the parameter A is obviously related to ρ̇(0), but in an awkward algebraic way we refrain

to exhibit.

Taking typical [3, 20] parameters |∆| = 2.5Γ where Γ = 2π × 6MHz, kL ∼ 107 m−1,

sinc = 0.1, m = 1.41×10−25 kg (rubidium), |∇B| = 25G/cm , kBT = 5.4×10−27 J (Doppler

temperature), ξ0 = 0.28mm, ω = 697 rad/s , ν = 231 s−1, together with ωTL = 1560s−1 and

ρeq = 1.5, we have the damped oscillations shown in Fig. 1. The numerical simulation of

Eq. (23) and the approximate solution from Eq. (24) yield almost identical results in this

case.

The number density in this case becomes

n(ξ, 0) = n0

(
1−

(
ξ

ξ0

)2) 3
2

, ξ ≤ ξ0 . (26)

From Eq. (22) we have the number of confined atoms

N = 4π

∫ ξ0

0

n(ξ, 0)ξ2dξ = 1.23n0ξ
3
0 . (27)

For the parameters of Fig. 1 and n0 = 1015m−3 we have N = 2.7 × 104 atoms, in

agreement with experiments reported in [3].

The existence of the (stable) equilibrium is due to the sign of the inverse cubic term,

which in turn comes from the concavity of the number density in Eq. (26). Alternatively,

one can write the conservative part of Eq. (23) in terms of a potential V = V (ρ), or

ρ̈+ νρ̇ = −(1/m)dV/dρ , V =
mω2ρ2

2
+

5kBT

2ξ20

1

ρ2
. (28)
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5 10 15 20 25 30
τ ω

1.2

1.4

1.6

1.8

2.0

2.2

ρ

FIG. 1. Auxiliary function ρ as a function of time. Blue curve: analytical solution Eq. (24) with

A = 0.7 and ωτ0 = 2.85. Orange curve indicates ρeq = 1.5. Parameters: m = 1.41 × 10−25 kg,

kBT = 5.4 × 10−27 J, ξ0 = 0.28mm, ω = 697 rad/s, ν = 231 s−1 and ωTL = 1560 s−1. Initial

conditions: ρ(0) = 1 and ρ̇(0) = 0.

The repulsion term ∼ 1/ρ2 prevents collapse to the origin.

Using Eqs. (11) and Eq. (5) we can obtain the relation between the Lagrangian and the

physical coordinates, namely r = ξρ and t = τ . Replacing Eqs. (21) and (24) into Eq. (14)

we have that the number density in terms of physical coordinates is given by

n(r, t) = n0

{
1− r2/

[
ξ20

(
ρ2eq + 2A2e−νt + 2Ae−νt/2

(
ρ2eq + A2e−νt

)1/2
cos(2ω(t− τ0))

)]} 3
2

(
ρ2eq + 2A2e−νt + 2Ae−νt/2

(
ρ2eq + A2e−νt

)1/2
cos (2ω(t− τ0))

) 3
2

,

(29)

shown in Fig. 2.

In this subsection the collective force was neglected in comparison with the thermal

effects. Nevertheless, the collective force Fc can be found from Eq. (13), evaluated in terms

of hypergeometric functions for a density number given by Eq. (26) and general polytropic
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0.5 1.0 1.5 2.0 2.5 3.0

r

ξ0

0.5

1.0

1.5

n

neq

FIG. 2. Oscillations of the number density from Eq. (29), in the laboratory frame, normalized

to the asymptotic value neq = n0/ρ
3
eq. Dashed curve, blue: ωτ = 4.5; dash-dotted curve, orange:

ωτ = 15.5; full curve, green: ωτ = 30.5.

coefficient. For γ = 5/3 we find

Fc =
Qn0ξ0
48ρ2

(
ξ0
ξ

){[
1−
(

ξ

ξ0

)2] 1
2
[
− 8

(
ξ

ξ0

)4

+ 14

(
ξ

ξ0

)2

− 3

]
+

+ 3
arcsin(ξ/ξ0)

ξ/ξ0

}
, ξ ≤ ξ0 , (30)

shown in Fig. 3.

An alternative approach would be the linearization of the model around the equilibrium

n = 3mω2/Q, v = 0, Fc = mω2r. This method allows the derivation of plasma-like hybrid

waves and modified Tonks-Dattner resonances [16–18], considering small amplitude pertur-

bations. In comparison, the present Lagrangian variables technique allows the derivation of

arbitrary amplitude analytical solutions, as apparent e.g. from Eqs. (29) and (30). In addi-

tion, the nonlinear dynamics of the modulating field ρ is also accessed, both from Kuzmak-

Luke expansion and the identification of the potential V (ρ) in Eq. (28), which shows the

nonlinear stability of temporal oscillations. Similar remarks apply to all remaining nonlinear

solutions below.

Case II: γ = 1
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0.2 0.4 0.6 0.8 1.0

ξ

ξ0

0.5

1.0

1.5

2.0

Fc

Fc0

FIG. 3. Oscillations of the collective force inside of the atomic cloud, from Eq. (30) and normalized

to Fc0 = Qn0ξ0/48. Dashed curve, blue: ωτ = 4.5; dash-dotted curve, orange: ωτ = 15.5; full

curve, green: ωτ = 30.5.

In the isothermal γ = 1 case we define ω2
TL = 2kBT/(mξ20), so that Eq. (19) becomes

d2ρ

dτ 2
+ ν

dρ

dτ
+ ω2ρ =

ω2
TL

ρ
, (31)

which describes a dissipative nonlinear anharmonic oscillator with an inverse linear force.

Although a perturbative solution can be also found for small damping, it is too cumbersome

to be of any help. The number density from Eq. (18) is

n(ξ, 0) = n0 exp

(
−
(

ξ

ξ0

)2)
, (32)

which has no cutoff. One can write the conservative part of Eq. (31) in terms of a potential

V = V (ρ), or

ρ̈+ νρ̇ = −(1/m)dV/dρ , V =
mω2ρ2

2
− 2kBT

mξ20
ln ρ . (33)

The repulsion term shown in Eq. (33) prevents ρ = 0 in a finite time, as illustrated in Fig.

4. The equilibrium is ρeq = [2kBT/(mω2ξ20)]
1/2.

The collective force is found from Eqs. (12) and (32),

Fc =
Qn0ξ0
4ρ2

(
ξ0
ξ

)2
[
√
π Erf

(
ξ

ξ0

)
− 2

ξ

ξ0
exp

(
− ξ2

ξ20

)]
, (34)
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0
Ρ

V

FIG. 4. Generic form of the potential in Eq (33), using arbitrary units.

shown in Fig. 5, where Erf(s) = (2/π
1
2 )
∫ s

0
exp(−s′2)ds′ denotes the error function of generic

argument s. Finally, from Eqs. (15) and (32) we have N = n0(
√
πξ0)

3 confined atoms.

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Ξ

Ξ0

Fc

Fc0

FIG. 5. Collective force from Eq. (34) for a fixed time, normalized to Fc0 = Qn0ξ0/(4ρ
2).
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B. Multiple-scattering (MS) regime

When multiple-scattering dominates the pressure effects, one can drop the ∼ kBT term

in Eq. (16), (
ρ̈+ νρ̇+ ω2ρ

)
ρ2 =

ω2
p

∫ ξ

0
ξ′2n(ξ′, 0)dξ′

n0ξ3
. (35)

Focusing on a region inside the atomic cloud (ξ < ξ0), the only way to satisfy Eq. (35) is to

have an uniform density n = n0 for ξ < ξ0, where ξ0 > 0 is a cutoff, while n = 0 otherwise.

Then Eq. (35) gives

ρ̈+ νρ̇+ ω2ρ =
ω2
MS

ρ2
, (36)

which describes a dissipative nonlinear oscillator, where ωMS = ωp/
√
3 is identical to the

Mie oscillations frequency, in this case associated to the nonlinear contribution arising from

the MS effects. By inspection it is possible to identify the general equilibrium solution, given

by

ρeq =

(
ω2
MS

ω2

) 1
3

. (37)

Alternatively, one can write the conservative part of Eq. (36) in terms of a potential

V = V (ρ),

ρ̈+ νρ̇ = −(1/m)dV/dρ , V =
mω2ρ2

2
+

mω2
MS

ρ
. (38)

As in the TL case, the damped oscillations of ρ never produce a singularity (ρ = 0) in a

finite time, thanks to the repulsion term in V . The undamped case (ν = 0) can be solved

by quadratures in terms of elliptic functions.

In experiments with rubidium in the high density regime [1, 21, 30, 48], n0 = 1016m−3, the

plasma frequency is typically ωp ≈ 200 rad/s. For instance, if ω = 697 rad/s and ν = 231 s−1,

then ρeq = 0.01. With ξ0 = 1.8mm, the number of confined atoms is N = (4π/3)n0ξ
3
0 =

2.3× 108, in agreement with [30].

Inside the atomic cloud (r < ρξ0), the number density and the collective force are given

by

n =
n0

ρ3
, Fc =

Qn0r

3ρ3
. (39)

Asymptotically, in agreement with the literature [27, 30, 31, 48], ρ → ρeq, so that n →

nMS ≡ 3n0ω
2/ω2

p = 3kc/[(σR − σL)I0σL], where k is the spring constant. As expected a

stronger confinement ∼ ω2 and a smaller collective force ∼ ω2
p produce a bigger number

density.
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C. Mixed TL + MS regime (γ = 4/3)

The restrictive condition in Eq. (17) is also satisfied for γ = 4/3, which allows to keep

both thermal and collective effects. This polytropic index is an intermediate case between

isothermal (γ = 1) and adiabatic (γ = 5/3) values. Equation (16) splits into

d2ρ

dτ 2
+ ν

dρ

dτ
+ ω2ρ =

Ω2

ρ2
(40)

and

− 4kBT

mξ

d

dξ

[(
n(ξ, 0)

n0

)1/3
]
+

ω2
p

n0ξ3

∫ ξ

0

n(ξ′, 0)ξ′2dξ′ = Ω2 , (41)

where Ω2 > 0 is a constant taken as positive to avoid ρ = 0 in a finite time.

The temporal part of the dynamics can be also written as

ρ̈+ νρ̇ = −(1/m)dV/dρ , V =
mω2ρ2

2
+

mΩ2

ρ
. (42)

The equilibrium solution is ρeq = (Ω/ω)2/3 .

The spatial part described by Eq. (41) can be rewritten as

4

R2

d

dR

(
R2 dn̄

dR

)
= n̄3 − 3

Ω2

ω2
p

, (43)

where n̄ = (n(ξ, 0)/n0)
1
3 and R = ξ/λ with λ = [kBT/(mω2

p)]
1/2 being the Debye length. The

initial condition from the definition of n̄ and from Eq. (41) should be n̄(0) = 1, n̄′(0) = 0,

a prime denoting derivative with respect to R. Indeed, expanding in the vicinity of origin,

Eq. (41) gives

4
dn̄

dR
= (n̄3 − Ω2

ω2
p

)R +O(R2) , (44)

so that n̄′(0) = 0. If the nonlinear term ∼ n̄3 could be discarded, Eq. (43) would be a

Lane-Emden equation of index zero [49], which is exactly solvable. However, keeping all

terms Eq. (43) needs to be numerically solved.

The parameter Ω2 is related to the confinement characteristics. It is numerically verified

that for Ω2 > ω2
p/3 one has only localized solutions n̄(R) for Eq. (43), with a cutoff R0 > 0

such that n̄(R0) = 0. For Ω2 < ω2
p/3, the solution is unbound. Finally, if Ω = ωp/

√
3 (the

Mie oscillations frequency), the initial condition is a (linearly unstable) fixed point. The

trapping occurring for Ω larger than the Mie frequency can be understood since from Eq.
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(43) it corresponds to the initial condition as a maximum (n̄′′(0) < 0 for n̄(0) = 1, n̄′(0) = 0)

of the number density. From now on we assume Ω > ωp/
√
3.

Using Eq. (15) we find the number of trapped atoms,

N = 4πn0λ
3

∫ R0

0

n̄3(R)R2dR . (45)

For a prescribed Ω/ωp, one can find the cutoff R0 from Eq. (43) together with n̄(0) =

1, n̄′(0) = 0. Then Eq. (45) gives the number of particles. Reciprocally, the inverse path

provides Ω/ωp as a function of N , which is the ultimate method for the determination of

the otherwise undefined value of Ω given the remaining parameters (plasma frequency and

Debye length).

Figure 6 shows the simulations result for Eq. (43) for two different values of η = Ω2/ω2
p.

As expected, a larger η corresponds to a smaller R0. For η = 1, we have from Eq. (45)

that R0 = 3.09 and N = 5.16 g, where g = 4πn0λ
3/3 is the number of particles in a

Debye sphere, while for η = 2 we have R0 = 0.49 and N = 1.47g. For typical parameters

kBT = 4.2 × 10−27 J, n0 = 1016 m−3, m = 1.41 × 10−25 m−3 and Q ∼ 10−36 Nm2 [1, 21]

we then have N = 1.8 × 107 (for η = 1) or N = 5.1 × 106 (for η = 2) confined atoms.

The general functional dependence of the cutoff R0 in terms of η is shown in Fig. 7. As

anticipated, confinement occurs for η > 1/3. Similarly, the numerical integration of Eq. (43)

and applying Eq. (45) we have the number of confined atoms in terms of η, shown in Fig.

8.

III. Validity conditions

It is necessary to have a more detailed account on the validity conditions of the solution

in the diverse regimes. This issue will be discussed in the immediate continuation.

A. Weak damping condition

In the dissipative Pinney equation Eq. (23), the approximate solution given by Eq. (24)

holds with the condition ν ≪ ω. Regarding Eqs. (4), the weak damping condition becomes

µB|∇B|[mΓ(1 + 4∆2/Γ2)2]

8h̄2k3
Lsinc|∆|

≫ 1 . (46)
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FIG. 6. Numerical solution of Eq. (43) with n̄(0) = 1, n̄′(0) = 0, for different values of η = Ω2/ω2
p.

Upper curve, line, red: η = 1. Lower curve, dashed, blue: η = 2.
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FIG. 7. Cutoff R0 for the bound solutions of Eq. (43) as a function of the parameter η = Ω2/ω2
p.

In typical experiments |∆| = 2.5Γ where Γ = 2π × 6MHz, kL ∼ 107m−1, sinc = 0.1 and

m = 1.41 × 10−25 kg. The weak damping conditions is satisfied for |∇B| ≫ 2.7G/cm,

which is easily obtained since in MOTs the characteristic intensity of the gradient field is

|∇B| ≥ 10G/cm [3, 30, 32, 50].
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FIG. 8. Number N of confined atoms, normalized to the number of particles in a Debye sphere

g = 4πn0λ
3/3, as a function of the parameter η = Ω2/ω2

p. From Eq. (45) and after numerical

integration of Eq. (43).

B. TL regime: validity conditions

We can analytically evaluate the pressure dominance condition of II.A in the specific

case γ = 5/3. From comparison of the repulsion terms in Eq. (16) and using Eq. (26), it

amounts to 5kBTξ/(mξ20) ≫ Fc/m, where the collective force is given by Eq. (30). Some

algebra then yields
15kBT

mω2
pξ

2
0

>> ρf(ξ/ξ0) , (47)

where

f(ξ/ξ0) =
1

16

(
ξ0
ξ

)2{[
1−
(
ξ

ξ0

)2] 1
2
[
− 8

(
ξ

ξ0

)4

+ 14

(
ξ

ξ0

)2

− 3

]
+ 3

arcsin(ξ/ξ0)

ξ/ξ0

}
≤ 1 . (48)

The last estimate happens because f(ξ/ξ0) ≤ 1 as seen in Fig. 9.

The most stringent constraint from the inequality in Eq. (47) is for the maximum value

ρ = ρmax ≈
√
ρ2eq + A2 + |A|, a return point obtained from the perturbative solution (24)

where damping was neglected, for the sake of the estimate. Hence, the pressure dominance

assumption holds for

15kBT

mω2
pξ

2
0

≫
√

ρ2eq + A2 + |A| ≥ 1

2
(1 + ρ2eq + |1− ρ2eq|) , (49)
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where the last inequality is due to the constraint reported below Eq. (25) in order to satisfy

the initial condition ρ(0) = 1. In terms of the physical parameters, the inequality (49)

unveils two subclasses, as follows.

1. Thermal dominated equilibrium

The thermal dominated equilibrium (ρeq = [5kBT/(mω2ξ20)]
1/4 ≥ 1) case corresponds to(√

3ω

ωp

)
ρ2eq ≫ ρeq ≥ 1 . (50)

Under the condition (50), one can neglect the collective force. It is interesting to note that

the trap frequency ω is not necessarily bigger than the Mie frequency ωp/
√
3, provided that

thermal effects are large enough so that ρeq ≫ 1.

2. Harmonic confinement dominated equilibrium

Whenever the trap is strong enough so that ρeq ≤ 1, Eq. (49) implies

1 ≥ ρ2eq ≫
ωp√
3ω

, (51)

which needs a large harmonic confinement frequency compared to the Mie oscillations fre-

quency.

All in all, both Eqs. (50) and (51) show that

ρ2eq ≫
ωp√
3ω

(52)

is the ultimate condition to rigorously justify the TL approximation, when γ = 5/3. For the

parameters of Fig. 1 together with n0 = 1015 m−3, Q ∼ 10−36 Nm2 gives ωp/
√
3 = 48.6 rad/s

while ω = 697 rad/s. This example fits the thermal dominated scenario, with ρeq = 1.5.

On the other hand, proceeding as before but for the isothermal case γ = 1, we get

6kBT

mω2
pξ

2
0

>>
h(ξ/ξ0)

ρ
, (53)

where

h(ξ/ξ0) =
3

4

(
ξ0
ξ

)3
[
√
π Erf

(
ξ

ξ0

)
− 2

ξ

ξ0
exp

(
− ξ2

ξ20

)]
≤ 1 . (54)
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FIG. 9. Lower curve, blue: function f(ξ/ξ0) from Eq. (48); upper curve, orange: h(ξ/ξ0) from Eq.

(54).

The function h(ξ/ξ0) is shown in Fig. 9.

The most stringent condition from Eq. (53) happens for h(ξ/ξ0) = 1 and ρ = ρeq =

[2kBT/(mω2ξ20)]
1/2 which is the minimum of the potential V in Eq. (33). We then get

ρeq ≫
(

ωp√
3ω

)2/3

(55)

as the condition for the TL regime in the isothermal case. This is similar to Eq. (52), keeping

in mind the slightly different expressions for ρeq in the adiabatic γ = 5/3 and isothermal

γ = 1 cases. Also, in terms of the number of particles,

N ≪ nMS

(
2πkBT

k

) 3
2

, (56)

which is in agreement with [3].

Reciprocally, the validity conditions for the MS regime are the inverse of the conditions

for the TL regime.

IV. Conclusion

In this work, nonlinear, time-dependent structures were derived for trapped cold atoms

in a magneto optical trap, in terms of the Lagrangian variables method. Three classes of
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solutions have been identified. The first class is for thermally dominated systems with an

arbitrary polytropic coefficient, which for an adiabatic equation of state reduces to a damped

Pinney equation (an endemic ordinary differential equation in nonlinear mechanics), with

dissipative features due to the Doppler cooling. The second class of solutions is applicable

to multiple-scattering dominated systems. The third class (with polytropic index γ = 4/3)

of solutions is applicable when the joint TL and MS effects are relevant. In all cases, the

solutions are valid for specific forms of the initial particle number density, while the time-

evolution is given in terms of the damped nonlinear oscillations of the scale function ρ.

The validity conditions for the solutions have been analytically determined in terms of the

physical parameters, which can helps the experimental verification of the predictions. In

this context the main advantage of the Lagrangian variables method is to provide a detailed

analytical account of the non-stationary and nonlinear aspects of the dynamics, unavailable

through other approaches. Also notice that the present approach can be directly adapted

to non-neutral, confined plasmas, where the damping mechanism can be traced back to

collisions with neutrals.

The spirit of this work can be generalized in several directions, like for more complex

geometries due the misalignment of the lasers in xy-plane which gives rise a tangential force

[31, 33], asymmetric forces, harmonic traps with a time-dependent frequency ω = ω(t) and

single-component, non-neutral plasmas. Finally, it would be interesting to characterize the

linear limit of our derived nonlinear structures, potentially offering a more precise connection

with previous treatments in the literature [16–18]. These possibilities are under investigation

and will be reported elsewhere.
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