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The combined effect of special relativity and electron degeneracy on Langmuir waves is analyzed,
by utilizing a rigorous fully relativistic hydrodynamic model. Assuming a traveling wave solution
form, a set of conservation laws is identified, together with a pseudo-potential function depending
on the relativistic parameter pF /(mc) (where pF is the Fermi momentum, m is the mass of the
charge carriers, and c the speed of light), as well as on the amplitude of the electrostatic energy
perturbation.
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I. INTRODUCTION

In recent years, a number of special-relativistic hydrodynamic models of charged particle systems have appeared.
In this respect, many works in the literature have already been properly criticized [1, 2], the main points namely
being: (a) they do not take into account relativistic mass increase due to random, not bulk motion; (b) the pressure
term is frequently written in a non-Lorentz-invariant form; (c) the majority of approaches are not consistent with
the well known relativistic hydrodynamics of neutral fluids [3, 4]. The purpose of the present work is to perform an
analysis of joint relativistic and Fermi-degenerate effects on Langmuir waves in one-species plasmas, using the accurate
relativistic hydrodynamic model presented in [1, 2]. The interest in plasmas with relativistic effects arising precisely
due to degeneracy, with Fermi momenta of the order of mc, where m is the mass of the charge carriers and c the speed
of light, is increasing due to the large densities achieved nowadays in both laboratory and astrophysical settings [5].
Examples are provided by plasmas present in intense laser-solid interaction experiments, or in compact stars as white
dwarfs. Hence a proper formulation of these quantum-relativistic plasmas in a simplified fluid framework is necessary,
in benchmark problems like the propagation of Langmuir waves. Fluid-theoretical studies can be taken as a first step
towards the understanding of the nonlinear features of these systems.
The propagation of relativistic Langmuir waves in plasmas is a traditional subject, but has never been explicitly

considered in connection to Fermi degeneracy. Akhiezer and Polovin [6] and Dawson [7] considered the wave breaking
problem in the cold case. Later, Coffey [8], in the non-relativistic case, and Katsouleas [9] in the relativistic case,
addressed the same problem including thermal effects by means of a waterbag [10] model, which is formally analogous
to a one-dimensional fully degenerate plasma model. This physical correspondence, however, was not recognized. In
this context, one of the purposes of the present work is to fill this gap, starting from first principles and (in another
distinctive approach) adopting the three-dimensional Fermi gas equation of state.
Admittedly, our formulation does not take into account quantum wave effects manifested in the dispersive, quantum

Bohm potential term. The justification for this limitation is that for dense plasmas [11, 12] one can prove that quantum
statistical effects are of a higher order relevance than quantum diffraction. Other quantum plasma systems, like those
in ultra-small electronic devices depending on quantum wave-like effects such as quantum tunneling, would deserve
an extended fluid treatment, whose rigorous form is unknown at present.
This work is organized as follows. In Section II, the appropriate relativistic hydrodynamic plasma model and

equations of state for fully degenerate plasma are reviewed. In Section III, the analytical model for Langmuir waves
is reduced to a set of ordinary differential equations, by seeking traveling-wave type solutions. The corresponding
conservation laws are identified. Assuming a propagation speed of the order of the speed of light, linear and nonlinear
solutions are addressed in Section IV. The conclusions are written in Section V.
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II. RELATIVISTIC HYDRODYNAMICS AND EQUATIONS OF STATE

Our starting point is the relativistic fluid model for one-species plasma, as proposed in [1, 2],

∂(γn)

∂t
+

∂(γnu)

∂x
= 0 , (1)( ∂

∂t
+ u

∂

∂x

)
(γu) = − γ

Hmn

(
∂

∂x
+

u

c2
∂

∂t

)
P +

e

Hm

∂ϕ

∂x
, (2)

∂2ϕ

∂x2
=

e

ε0
(γn− n0) , (3)

where n and u are respectively the number density and velocity field in the laboratory frame, ϕ is the electrostatic
field, γ = (1 − u2/c2)−1/2 is the relativistic dilation factor where c is the speed of light, −e is the electron’s charge,
ε0 is the vacuum’s permittivity, and n0 is an equilibrium ionic background. In the momentum equation, P and H
denote respectively the scalar pressure and a dimensionless enthalpy. These quantities should be specified by means
of equations of state, ensuring the closure of the system, as described below.
The relativistic equations for charged fluids have been presented in several, nonequivalent ways in the literature;

see e.g. [1, 2] for a critical review. The present form is manifestly consistent with the form(s) proposed in [3, 4] for
neutral fluids, as obtained via a Lorentz transformation from the local proper reference system. The inclusion of the
electrostatic field is obtained thanks to the covariant coupling with the electromagnetic stress-energy tensor, although
here magnetic field generation is suppressed, for analytical simplicity. The enthalpy-like quantity H represents a
non-trivial relativistic mass increase due to thermal motion only, and is frequently omitted in less rigorous relativistic
treatments. On the other hand, the γ factor here representing the relativistic mass increase due to bulk motion appears
in all possible and non-equivalent ways in fluid formulations in the literature, as remarked in [1, 2]. In addition, notice
the manifestly Lorentz-invariant form of the pressure term in Eq. (2).
In the present treatment, changes are allowed along one spatial direction x, in a rectangular geometry with a

full 3D velocity field u = u(x, t)x̂. Other, potentially interesting situations, would consider propagation of waves in
truly one-degree-of-freedom systems, as can happen e.g. in the surroundings of neutron stars atmospheres, where
the existence of super-strong magnetic fields effectively limit the dynamics to one dimension [13, 14]. Our choice is
dictated by the interest in the analysis of quasi-1D wave structures propagating in otherwise isotropic media, such as
in dense plasmas where relativistic and degeneracy effects come together. This scenario is likely to appear in the next
generation of dense laser-plasma interaction experiments, or in astrophysical objects like white dwarfs. In this case,
on physical grounds it is reasonable to assume energy spreading among the available degrees of freedom, so that a 3D
equation of state is obeyed.
We note that, unlike non-degenerate plasmas, the equations of state for degenerate plasmas have a form which is

strongly dependent on the number of available degrees of freedom. A more complete treatment, considering also 1D
and 2D systems, will be reported elsewhere.
The equations of state for a fully degenerate electron gas are known since long, see Chandrasekhar [15] and also

Oppenheimer and Volkoff [16]. Unlike these celebrated works devoted to the question of stellar structure, here we
focus on the electrostatic and not the gravitational aspects. For completeness, we briefly review the derivation of the
relevant equations of state, assuming in equilibrium a completely degenerate Fermi-Dirac distribution f = f(r,p) in
phase space,

f(r,p) = 2

(
1

2πh̄

)3

, |p| < pF ; f(r,p) = 0 , |p| > pF , (4)

where h̄ is the scaled Planck’s constant and pF is the Fermi momentum. By means of
∫
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1/3h̄. The factor 2 in Eq. (4) is due to the electron spin.

For the scalar pressure, consider the average momentum flux
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where
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is the relativistic parameter [17]. Regarding the enthalpy-like function H, it is defined in equilibrium as
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is the equilibrium mass-energy density.
The above results have been found for a strict equilibrium. Assuming these relations to be valid in a local quasi-

equilibrium, we replace n0 → n and derive the Chandrasekhar equations of state, to be inserted in the hydrodynamic
equations,
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In passing, note that P and ρ satisfy Taub’s inequality [18]. Having at hand a closed system for the evolution of
n, u and ϕ, in the following we shall investigate the behavior of a particular class of possible solutions, namely
traveling-waves.

III. TRAVELING-WAVE SOLUTIONS AND CONSERVATION LAWS

Assuming all fields to be dependent only on the travelling coordinate

X = x− V t , (13)

where V is the propagation speed, it is straightforward to see that the continuity, momentum and Poisson equations
can be integrated once, thus yielding the first integrals J , I and K given respectively by
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These conservation laws have a general applicability, as long as the thermodynamic relation
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It is convenient to postulate the existence of a position X = X0 such that
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where E0 is the electric field at the reference point X = X0. This corresponds to a fluid element at rest and with the
equilibrium density, possibly under the action of a non-zero acceleration due to a launched electric field. In this way,
and for a convenient gauge choice for the scalar potential, one may evaluate

J = n0V , (19)
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We assume V ̸= 0 in the present context, to avoid trivial solutions. Without loss of generality, it is supposed that
V > 0.
To proceed, a number of possibilities can be considered. Since in our case the scalar pressure is a complicated

expression of the density, it is appropriate to express the conservation equations in terms of n. Furthermore, significant
simplification appear in the physically interesting case of very large value of the propagation speed V ≈ c, so that the
simple relations

u
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are approximately valid. In this way, the K conservation law after a few algebraic steps takes the form
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with the pseudo-potential
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In this expression, H and ζ are functions of n̄ according to Eq. (12), and
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is a measure of the electrostatic energy perturbation amplitude.

IV. LINEAR AND NONLINEAR OSCILLATIONS

Given a non-zero input δ, the pseudo-potential in Eq. (25) admits linear oscillations around a minimum n̄ = n̄∗
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For negligible relativistic parameter ζ0 and perturbation amplitude δ one has k2 = 1. After restoring physical
coordinates this recovers the usual Langmuir oscillations at the plasma skin depth scale c/ωp. On the other hand,
larger degeneracy effects and a larger ζ0 gives a smaller k, as shown in Fig. 1 for parameters representative of dense
laser-solid plasma interaction experiments and white dwarfs. Finally, nonlinear oscillations can be predicted from
the form of the pseudo-potential, which is depicted in Fig. 2, for a number density typical of white dwarfs and for
different values of δ (the parameter associated with the electrostatic energy perturbation). Notice that from Eq. (23)
one needs U(n̄) < 0 to have a dynamical behavior. In view of the special class of initial conditions in Eq. (18), this
requires δ > 0, so that the fluid element at the reference point is acted by a launched electric field.
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FIG. 1: Illustrative plots of the wave number k from Eq. (29), for δ = 0.1 and 0 ≤ ζ0 ≤ 1.2. For reference, for n0 = 1032m−3

(current intense laser plasma experiments) one has ζ0 = 0.05, while for n0 = 1036m−3 (white dwarfs) one has ζ0 = 1.20.
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FIG. 2: Pseudo-potential U(n̄) from Eq. (25) for ζ0 = 1.20 (white dwarfs) and either δ = 0 (upper) or δ = 0.1 (lower).

For initial conditions in the numerical simulations, we set X0 = 0 and take into account the fact that(
dn̄

dX̄

)
(0) = ± H0

√
2δ

1 + 2ζ20/3
, (31)

as follows from the initial condition in Eq. (18) and after managing the conservation laws. Perturbation from
equilibrium needs δ ̸= 0, which is also consistent with a deeper minimum of the pseudo-potential, as can be inferred
from Eq. (30). Moreover, using the conservation laws it can be shown that

d2

dX̄2

(
H

n̄

)
=

1

2
(n̄2 − 1) , (32)

with initial conditions n̄(0) = 1, (dn̄/dX̄)(0) given by the relation (31). Typically one get oscillations like shown in
Fig. 3, where the dimensionless density n̄ oscillates between the turning points where V (n̄) = 0. Wave breaking is
not observed, due to the propagation speed V ≈ c.

V. CONCLUSIONS

In this work, a consistent special-relativistic fluid treatment of Langmuir waves in dense plasmas is carried out. The
presented model takes into account the relativistic mass increase due to thermal, degeneracy pressure effects, which
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FIG. 3: Oscillations of the dimensionless density n̄ from Eq. (32) with n̄(0) = 1, ζ0 = 1.195 (white dwarfs) and δ = 0.1, which
gives (dn̄/dX̄)(0) = 0.36, consistent with Eq. (31). For these parameters one find the turning points n̄ = 0.67, n̄ = 1.48, so
that U(n̄) = 0 in Eq. (25).

is an often neglected feature. This common over-simplification tend to be dangerous when the Fermi momentum pF
becomes of the order of mc, as happens in dense astrophysical objects, for instance. Moreover, our model equations
have the pressure in terms of a Lorentz-covariant derivative expression, in accordance with rigorous relativistic hy-
drodynamic theories [1–4]. Some properties of linear and nonlinear traveling wave solutions have been explored, with
emphasis on the role of the relativistic parameter ζ0. A more detailed account is reserved to future work, with a
thorough examination of the role of dimensionality, different initial conditions and propagation speed.
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