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Abstract

We set up a proposal to extend significantly recent works on neutrino-plasma interaction, allowing

the possibility of deep degenerate and relativistic electrons, which are often present in compact

stars such as high-density white dwarfs. The methodology involves the covariant hydrodynamic

formulation of ultra-dense plasmas. We propose the generalization of previous studies, on the

interaction between ion-acoustic waves and the resonant neutrino flavor oscillations in a mixed

neutrino beam, admitting of degenerate and relativistic electron populations. The destabilization

of the ion acoustic wave has higher growth rates, thanks to the very large densities present in

plasmas in these extreme conditions. We take into account applications to white dwarf stars in the

process of collapsing producing type II supernovae.

PACS numbers: 04.40.Dg, 13.15.+g, 52.27.Ny, 52.35.Pp, 97.60.Bw
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I. INTRODUCTION

Neutrinos play a decisive role in a variety of fields, such as cosmology, particles and astro-

physics. The 2015’s Nobel Prize, in particular, awarded to T. Kajita and A. B. McDonald

for the experimental confirmation of neutrino flavor oscillations, shows the existence of a

neutrino mass, pointing out to the incompleteness of the Standard Model.

In the process of gravitational collapse, the extreme densities obtained in the core enhance

the inverse beta decay rates, resulting in strong neutrino winds propagating out from the

proto-neutron star. Neutrino beams are believed to be responsible for the plasma heating

in the stalled shock in type II supernova explosions [1–3]. In this context, for the supernova

SN1987A, it was observed a burst of 1058 neutrinos of all flavors radiated in a few seconds [4].

Sources of anisotropic neutrino beams have also been investigated [5]. Moreover, neutrinos

play a central role in the lepton era of the early universe [6].

Recently, a model for the neutrino-plasma interaction taking into account neutrino oscilla-

tions was proposed [7], assuming for simplicity non-degenerate and non-relativistic electrons.

However, in compact stars these restrictions are violated easily, with strongly degenerate

and relativistic electrons due to Fermi velocities near the speed of light. The purpose of the

present work [8] is to improve significantly the previous treatment, in terms of the hydrody-

namic model arising from the perfect relativistic fluid equations [9] modified by the neutrino

force. Our aim is to consider the destabilization of ion-acoustic waves driven by neutrino

beams, evaluating the associate instability growth rates in extreme scenarios. Previously,

neutrino oscillations in non-relativistic plasmas have also been analyzed in [10] and [11],

taking into account the collisional damping of ion-acoustic waves. In addition, neutrino-

magnetohydrodynamic modes [12, 13] and neutrino modified wave propagation in strongly

magnetized plasma [14] have been considered, without the inclusion of flavor oscillations,

degeneracy or relativistic effects.

The article is organized as follows. In Sec. II, the basic fluid model for the degenerate

relativistic electrons and cold non-relativistic ions is written, coupled to a two-flavor neutrino

beam taking into account neutrino oscillations. In Sec. III, the linear dispersion relation

for ion-acoustic waves is derived. Assuming a double resonance condition between the ion-

acoustic wave, the neutrino beam and the neutrino oscillations, the appropriate instability

growth rate is obtained. In Sec. IV, the growth rate is evaluated for parameters compatible
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with type II supernovae. The time-scale of the instability and the unstable wavelengths are

calculated, allowing us to estimate the impact of neutrino oscillations. Section V is reserved

to the conclusions.

II. BASIC MODEL

For simplicity, we consider a two-flavor neutrino model. The model is given by a hydro-

dynamical model for electrons, ions, electron-neutrinos and muon-neutrinos. Denoting ne,i

and ue,i as respectively, the electron (e) and ion (i) proper fluid densities and velocity fields,

one has the relativistic electrons continuity and force equations,

∂(γne)

∂t
+∇ · (γneue) = 0 , γ =

(
1− |ue|2/c2

)−1/2
, (1)

meH

(
∂

∂t
+ ue · ∇

)
(γue) = − γ

ne

(
∇+

ue

c2
∂

∂t

)
P + e∇ϕ+

√
2GF (Eν + ue ×Bν) , (2)

together with the corresponding non-relativistic equations for cold ions,

∂ni

∂t
+∇ · (niui) = 0 , mi

(
∂

∂t
+ ui · ∇

)
ui = −Z e∇ϕ . (3)

In Eqs. (1)-(3), me,i are the electron (charge −e) and ion (charge Z e) masses, c is the speed

of light, GF is the Fermi coupling constant and ϕ is the electrostatic potential. In addition,

Eν ,Bν are effective neutrino electric and magnetic fields defined by

Eν = −∇Ne −
1

c2
∂

∂t
(Neve) , Bν =

1

c2
∇× (Neve) , (4)

in terms of the electron-neutrino fluid density and velocity field Ne,ve. We also have Pois-

son’s equation

∇2ϕ =
e

ε0
(γ ne − Z ni) , (5)

where ε0 is the vacuum permittivity constant. The Fermi weak force couples electrons

(leptons) to electron-neutrinos. Finally, to determine the pressure P = P (ne) for a fully
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degenerate electron gas we use Chandrasekhar’s [15] barotropic equation of state,

P

n0mec2
=

1

8ζ30

[
ζ(2ζ2 − 3)

√
1 + ζ2 + 3 sinh−1 ζ

]
, (6)

ζ =
~

mec
(3π2ne)

1/3 = ζ0

(
ne

n0

)1/3

, ζ0 =
pF
mec

, (7)

where n0 is the equilibrium electron number density, ~ is the reduced Planck constant

and pF = ~(3π2n0)
1/3 is the electrons Fermi momentum, yielding the specific enthalpy

H =
∫
dP/(mec

2ne) =
√

1 + ζ2, responsible for the relativistic electron mass increase due

to a large Fermi velocity. It is important to notice that the Chandrasekhar equation of state

gives a linear dispersion for ion-acoustic waves in the absence of neutrinos which agrees with

the result from the relativistic Vlasov equation, in the long wavelength limit [16]. In addition,

magnetized plasmas can be treated, simply including the magnetic force on electrons and

ions [14]. In the case of electromagnetic waves, also the full set of Maxwell equations would

be necessary [12, 13].

To close the system, one needs the equations for the two-flavor oscillations. One has

[7, 11]
∂Ne

∂t
+∇ · (Neve) =

1

2
N Ω0 P2 ,

∂Nµ

∂t
+∇ · (Nµvµ) = − 1

2
N Ω0 P2 , (8)

where Nµ,vµ are the muon-neutrino fluid density and velocity field, N = Ne+Nµ is the total

neutrino fluid density and P2 represents the quantum coherence in the flavor polarization

vector P = (P1, P2, P3). In addition, Ω0 = ω0 sin 2θ0, where ω0 = ∆m2c4/(2 ~ E0) with a

squared neutrino mass difference ∆m2. Finally, E0 is the neutrino spinor’s energy in the

fundamental state and θ0 is the neutrino oscillations mixing angle. Notice the conservation

law
d

dt

∫
(Ne +Nµ) d

3r = 0 , (9)

following for instance from decaying or periodic boundary conditions.

Representing the (ultra) relativistic electron and muon neutrino momenta by pe =

Eeve/c
2, pµ = Eµvµ/c

2, where Ee, Eµ are the corresponding neutrino beam energies, the
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neutrino force equations read

∂pe

∂t
+ ve · ∇pe =

√
2GF

(
−∇(γne)−

1

c2
∂

∂t
(γneue) +

ve

c2
× [∇× (γneue)]

)
, (10)

∂pµ

∂t
+ vµ · ∇pµ = 0 . (11)

The neutrino-plasma interaction model was derived from an action principle [17, 18], in the

absence of flavor oscillations and for non-relativistic electrons, see also [19] for the treatment

of neutrino-modified Langmuir waves.

To conclude, the flavor polarization vector P = (P1, P2, P3) evolves in a material medium

according to

∂P1

∂t
= −Ω(ne)P2 ,

∂P2

∂t
= Ω(ne)P1 − Ω0P3 ,

∂P3

∂t
= Ω0P2 , (12)

where Ω(ne) = ω0[cos 2θ0−
√
2GF ne/(~ω0)]. Equation (12) was derived [20, 21] for neutrinos

traveling in a fixed, static background, so that Ω(ne) involves the proper electron density

ne.

Overall, there are 20 equations defined by Eqs. (1)-(3), (5), (8) and (10)-(12), for 20 vari-

ables namely the quantities ne,i,ue,i, ϕ, Ne,µ, ve,µ and P1,2,3. We observe that the electron-

and muon-neutrino energies Ee,µ are functions of the corresponding momenta by means of

the usual relativistic energy-momentum relation Eν = (p2νc
2 + m2

νc
4)1/2, ν = e, µ. A neu-

trino mass mν is assumed just for the sake of the calculation (at the end it disappears).

Specifically, the procedure is detailed in the Appendix A of Ref. [7].

III. LINEAR WAVES

The system (1)-(3), (5), (8) and (10)-(12) admits the equilibrium

ne = n0 , ni = n0/Z , ue = ui = 0 , ϕ = 0 ,

Ne = Ne0 , Nµ = Nµ0 , ve = vµ = v0 , (13)

P1 =
Ω0

Ων

, P2 = 0 , P3 =
Ω(n0)

Ων

=
Ne0 −Nµ0

N0

,

5



where Ων =
√
Ω2(n0) + Ω2

0 is the neutrino-flavor oscillation frequency. Linearization and

taking plane wave perturbations∼ exp[i(k·r−ωt)] and following the same procedure detailed

in [7], the result is

ω2 = c2s k
2 +

∆e c
2 k2 Λ(θ) (c2 k2 − ω2)

(ω − k · v0)2
+

∆Ω2
0 ω E0 (c2 k2 − ω k · v0)

2 ~Ων (ω − k · v0) (ω2 − Ω2
ν)

, (14)

where

∆e =
2G2

F Ne0 n0

mi c2 E0
, ∆ =

2G2
F N0 n0

mi c2 E0
, Λ(θ) =

(
1− v20

c2

)
cos2 θ + sin2 θ , (15)

with k · v0 = k v0 cos θ and where the ion-acoustic speed cs in fully degenerate relativistic

plasmas [16] is given by

c2s =
Zp2F

3memi

√
1 + ξ20

, (16)

assuming completely ionized plasma with ionic atomic number Z. In comparison with [7],

the only difference is the improved ion-acoustic speed, now adapted to fully degenerate and

relativistic plasma, and additionally allowing for Z ̸= 1. It was assumed ω << ωpi =√
Z n0 e2/(mi ε0) and E0 = Ee0 ≈ Eµ0. By inspection, it is not surprising that the dispersion

relation (14) is formally identical to the result in [7] (with a new expression for the ion-

acoustic speed), since in the linearization procedure one has γ ≈ 1 due to the absence of

relativistic streaming electrons.

Besides the traditional ion-acoustic mode, Eq. (14) shows two contributions, one pro-

portional to ∆e which is due to the energy seed by the streaming neutrinos, while the term

proportional to ∆ is due to coupling with the neutrino oscillations. In the absence of squared

neutrino mass difference (∆m2 = 0) one has Ω2
0 = 0 so that the last term in Eq. (14) disap-

pears. If we formally set ∆ = 0, one regains the result in [22], with a modified ion-acoustic

speed, taking into account that cs << c except for huge densities typical of neutron stars,

outside the scope of the model.

IV. INSTABILITY OF ION-ACOUSTIC WAVE

In view of the small value GF = 4.62 × 10−62 J.m3 of the Fermi constant, the neu-

trino contribution in Eq. (14) will typically be a small perturbation. The neutrino effect
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on ion-acoustic waves without neutrino oscillations has been essentially performed in [22].

Therefore, it is more convenient to focus on the case where neutrino oscillations can have a

significant influence. Hence we assume the double resonance condition

ω ≈ cs k = Ων = k · v0 , (17)

enhancing the last term in the right-hand side of the dispersion relation (14). Physically, Eq.

(17) shows the (almost) resonance of the ion-acoustic wave with the streaming neutrinos,

and with the flavor oscillations, which carry an energy which can be exchanged with the

wave.

Assuming Eq. (17) we set

ω = Ων + δω , |δω| ≪ Ων , (18)

in Eq. (14). Taking into account ultra-relativistic neutrinos (v0 ≈ c), one get cos θ =

cs/c << 1 (a filamentation-like instability), ω << c k, so that Λ(θ) ≈ 1 and

(δω)3 =
∆e

2

(
c

cs

)4

Ω3
ν +

∆Ω2
0 E0

8~

(
c

cs

)2

, (19)

where k = Ων/cs was used. The unstable mode corresponds to a growth rate Γ = Im(δω) > 0

given by

Γ =
(
Γ3
ν + Γ3

osc

)1/3
, (20)

where

Γν =

√
3

2

(
∆e

2

(
c

cs

)4
)1/3

|k · v0| , Γosc =

√
3

2

(
∆Ω2

0 E0
8~

(
c

cs

)2
)1/3

. (21)

The quantity Γν is associated with the coupling with the streaming neutrinos (with Ων =

csk). Flavor oscillations are responsible for Γosc, which can have some impact only in the

case Eq. (17) is satisfied.

The relative influence of neutrino oscillations is given by

(
Γosc

Γν

)3

=

√
2

64

(∆m2c4)2 sin2(2θ0)

(GFn0)3

(cs
c

)2 N0

E0Ne0

. (22)
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For an initially muonic neutrino beam (Ne0 = 0, Nµ0 = N0), the flavor oscillations dominate,

since in this case at the beginning there are no electron-neutrinos to interact with the

plasma. Smaller electron densities and smaller streaming neutrinos energies enhance the

flavor oscillations correction. Figure I shows the growth rates for n0 = 5× 1029cm−3, N0 =

1036cm−3, E0 = 1MeV and varying initial electron-neutrino population, to be compared with

the time-scale of supernova explosions, around 1 second [3]. It is verified that in denser stars

the neutrino oscillations play a less significant role.

G

GΝ

Gosc

0 0.01 0.02

100

200

300

400

Ne0�N0

G Hs-1L

FIG. 1: Continuous line: growth rate Γ from Eq. (19) in terms of the normalized electron-neutrino

population. Line-dashed curve: the growth rate Γν which would take place without neutrino

oscillations. Horizontal dot-dashed line: the growth rate Γosc due uniquely to neutrino oscillations.

Parameters: n0 = 5× 1029 cm−3, N0 = 1036 cm−3, E0 = 1MeV.

The result (22) was derived using the inverted neutrino mass hierarchy assumption

Ω(n0) ≈ −Ων ≈ −
√
2GF n0/~ , (23)

which is always satisfied for the dense plasma under consideration. Indeed, taking ∆m2 c4 =

3× 10−5 (eV)2 , sin(2θ0) = 10−1 (suitable parameters solving the solar neutrino deficit prob-

lem [21]), we find √
2GFn0

~ω0

= 2.7× 10−26 n0 E0 >> 1 , (24)

where n0 is measured in cm−3 and E0 in MeV, which is the typical energy scale of neutrino

beams in supernovae progenitors [4], the inequality following from n0 > 1028cm−3 in the

standard cases [23].
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The relativistic effects are depicted in Figure II, for the representative parameters N0 =

Ne0 = 1035 cm−3, E0 = 10MeV. It is found that the growth rate increases significantly with

the plasma density, which also enhances the relativistic effects present in the ion-acoustic

speed. For comparison, the results from a non-relativistic fully degenerate model are also

shown, setting ξ0 ≡ 0 in Eq. (16). As apparent, the non-relativistic model underestimate

the growth-rates by a large amount, specially in denser stars. Notice that in the present

case the relativistic character of the plasma arises from the electron degeneracy, so that the

parameter ξ0 can have significant values.

In another potentially relevant limit, the plasma can be relativistic due to a large thermo-

dynamic temperature, but non-degenerate (T ≫ TF , where TF is the Fermi temperature).

In this situation, the equation of state would be obtained from the Jüttner distribution, and

both the pressure and the number density would involve Bessel functions. Nevertheless, at

the end the simple isothermal equation of state P (ne) = neκBT holds in the non-degenerate

case, for arbitrary relativistic strength [24, 25]. Hence the ion-acoustic speed becomes

cND
s =

√
Z(dP/dne)0/mi =

√
ZκBT/mi. Replacing cs from Eq. (16) by cND

s , one has the

growth-rate shown in Fig. III, where the parameters areN0 = Ne0 = 1035 cm−3, E0 = 10MeV

and T = 10TF (so that electrons are certainly non-degenerate). There is a qualitative similar-

ity in comparison with the extreme degenerate case (Fig. II). However, the non-degeneracy

condition requires large temperatures, shown in Fig. IV.

28 30 32 34 36

2

4

6

8

log10@n0Hcm-3LD

log10@G Hs
-1LD

FIG. 2: Continuous line: growth rate Γ from Eq. (19) as a function of plasma density, in logarithmic

scale, for iron core stars. Dashed line: the growth rate resulting from the non-relativistic expression

of the ion-acoustic speed. Parameters: N0 = Ne0 = 1035 cm−3, E0 = 10MeV.
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log10[Γ (s-1)]

FIG. 3: Growth rate Γ from Eq. (19) in non-degenerate plasma as a function of plasma density, in

logarithmic scale, using the non-degenerate ion-acoustic speed cND
s =

√
ZκBT/mi, for iron-core

stars. Parameters: N0 = Ne0 = 1035 cm−3, E0 = 10MeV, T = 10TF .

28 30 32 34 36
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10

12

14

log10[n0(cm
-3)]

log10[T(K)]

FIG. 4: Thermodynamic temperature T = 10TF , corresponding to Fig. III, as a function of plasma

density, in logarithmic scale.

Table I shows the diverse physical quantities for type II core-collapse supernovae electron

number densities [4, 5, 23, 26]. For the sake of illustration, we assume an iron core so that

henceforth Z = 26,mi = 56 a.m.u.. For convenience, the Fermi temperature TF obtained

from κBTF = (p2F c
2 +m2

ec
4)1/2 −mec

2 is exhibited (noticing the ultra-degeneracy condition

T << TF ). We observe that the relativistic parameter ξ0 = pF/(mec) becomes large for

very dense systems. The ion-acoustic speed is always seen to be much smaller than the light

speed. It can also be verified that Ων >> ωpi as required. In addition, one can define an

electron coupling parameter g = Ep/Ek, where Ek ≈ κBTF is a measure of the electrons
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kinetic energy and Ep = e2/(4πϵ0rs) is a measure of the electrons interaction energy in terms

of the Wigner-Seitz ratio rs = (3/4πn0)
1/3. As apparent from Table I, the electrons ideality

condition g << 1 is satisfied to a good approximation. Finally, besides the wave frequency

ω ≈ Ων , we also consider the wavelength λ = 2πcs/Ων , to be compared with the typical [27]

iron core size (∼ 30 km). Using the approximation (23), we derive

λ =
2π~cs√
2GFn0

, (25)

which always decreases with the density.

n0(cm
−3) TF (MeV) pF/mec cs/c g λ(m)

1028 0.02 0.3 2.3× 10−3 3.0× 10−2 7.2× 103

1030 0.29 1.2 8.8× 10−3 8.1× 10−3 0.6

1032 2.37 5.5 2.2× 10−2 4.5× 10−3 0.1

1034 12.68 25.7 4.7× 10−2 3.9× 10−3 0.03

1036 60.70 119.5 1.0× 10−1 3.8× 10−3 0.008

TABLE I: Parameters for iron core proto-neutron stars.

Another issue is the possible influence of Landau damping. Evaluating the imaginary part

of the longitudinal dielectric function for ion-acoustic waves in ultra-degenerate relativistic

plasma, it can be proven [28] that Landau damping is not relevant as long as pF/(mic) << 1,

which is satisfied except if n0 >> 1044 cm−3 (neutron star densities).

V. CONCLUSION

In this work, we reformulate and generalize the treatment of [7], now taking into ac-

count the degenerate and relativistic conditions of proto-neutron stars originating type II

core-collapse supernovae. The main results are the development of a general model for

neutrino-plasma interactions taking into account neutrino flavor oscillations, in degenerate

relativistic plasmas. The unstable wavelengths and resonance conditions with neutrino os-

cillations are found, destabilizing ion-acoustic waves in extreme relativistic astrophysical

scenarios. In comparison with the free energy source from the streaming neutrinos, the
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neutrino oscillations play a more significant role in the ion-acoustic wave destabilization,

only if the initial non-electronic neutrino population dominates. No quantum diffraction

(Bohm potential) was included because it can be estimated [7] as an exceedingly small

contribution for the wavelengths where the double resonance condition (17) is meet. Like-

wise, exchange-correlation potentials [29, 30] was not yet considered, since to our knowl-

edge, currently there are no known relativistic quantum hydrodynamical equations with

exchange-correlation taken into account. Future developments could involve finite electrons

temperature, finite neutrino beam temperature and collisional effects. Finally, we expect

that the instabilities should enhance the coupling of the neutrino beam with the plasma,

specially taking into account the large amplitude waves developing from the unstable linear

waves. It would be very interesting to compare the resulting coupling with the ones currently

considered in core-collapse supernova models.
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