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Abstract

A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the

charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The

model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized

plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic

wave is derived. Such an instability should play a central role in strongly magnetized plasma as

occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear

or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in

magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD

assumptions were adopted and analyzed in detail.

PACS numbers: 13.15.+g, 52.35.Bj, 95.30.Qd
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I. INTRODUCTION

Neutrinos are elusive particles weakly interacting with matter but playing a central role

in several still unsolved astrophysical phenomena, including supernova explosions, the for-

mation of structure in the Universe and neutron star core cooling [1]. A significant amount

of energy transfer between neutrino beams and plasma waves can take place over distances,

thus suggesting that such a mechanism could be crucial for the formation of an outgoing

stalled shock in type II supernovae [2]. Therefore, collective plasma effects tend to be more

crucial than single particle processes, regarding the coupling to neutrinos. Such a coupling

is described by the emergence of an effective neutrino charge in an ionized medium [3–5],

producing kinetic and reactive instabilities as well as neutrino Landau damping of plasma

waves [6].

In the present work a new field of research is proposed, where one of the most popular

approaches to space and laboratory plasmas, the magnetohydrodynamic (MHD) theory, is

extended in order to incorporate neutrino dynamics. Therefore the contribution bridges the

language gap between two major communities, namely astrophysical plasma and particle

physicists. In addition, the inclusion of neutrinos should be considered as a new avenue in

the study of astrophysical phenomena using laser-produced plasma, in the context of the

so-called magneto-quantum-radiative hydrodynamic equations [7].

Naturally the hydrodynamic modeling of neutrino based astrophysical problems is not

completely new and has been considered in the past, as in the case of neutrino-driven

convection in core-collapse supernova [8]. Typically in the previous approaches, neutrinos

appear by means of an approximate input of heating and cooling with local prescriptions,

acting as a source in the energy transport equation for a neutral fluid. The collective

plasma effects are therefore ignored. In particular, the role of the ambient magnetic field

is not usually taken into account in a systematic way (see [9] for a review). One has

therefore a language dichotomy from neutrino particle and plasma physics communities.

An intermediate setting containing the essential aspects from neutrino theory and collective

plasma aspects in a sufficiently simple MHD description would be a welcome tool to fill the

referred language gap, stimulating advances in the field.

Recently, neutrino-plasma fluid models have been proposed, first in a purely electrostatic

context [10] and then [11] allowing for magnetic fields and neutrino flavor oscillations [12].
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In the following, the discussion of neutrino-based magnetic field structures is systematized

in terms of a modified MHD theory, to be called neutrino magnetohydrodynamics (NMHD).

The derivation is based on a two-fluid plasma model coupled to a neutrino species, taking

into account the charged weak current. In view of the complexity of the resulting system

of equations, standard assumptions toward the simplified and ideal MHD theory [13–15]

will be adopted. In spite of the overall simplicity, the neutrinos will be shown to be respon-

sible for qualitatively new phenomena, such as magnetic field lines diffusion (in a formally

infinite conductivity plasma) and a fast new beam instability in a magnetosonic waves con-

figuration. Such an instability should play a central role in strongly magnetized plasma as

occurs in supernovae. Electrons and ions will be taken as non-relativistic, together with

(ultra-)relativistic neutrinos.

II. BASIC MODEL

We start with the two-fluid equations for an electron-ion plasma coupled to a neutrino

species, following the model put forward in [11]. The mass and momentum transport

equations for electrons (with mass me and charge −e) are resp.

∂ne

∂t
+∇· (neue) = 0 , (1)

me

(

∂ue

∂t
+ ue· ∇ue

)

= − ∇Pe

ne

− e(E+ ue ×B)

+ Fν +Kei , (2)

while ions (with mass mi and charge e) satisfy

∂ni

∂t
+∇· (niui) = 0 , (3)

mi

(

∂ui

∂t
+ ui· ∇ui

)

= − ∇Pi

ni

+ e(E+ ui ×B) +Kie . (4)

Finally, the neutrino fluid satisfy

∂nν

∂t
+∇· (nνuν) = 0 , (5)

∂pν

∂t
+ uν · ∇pν =

√
2GF (Ee + uν ×Be) . (6)

Apart from the neutrino component, Eqs. (1)-(6) are the traditional two-fluid (electron plus

ion) plasma equations [13–15], which are the starting point for the magnetohydrodynamic
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(by definition, an one-fluid) plasma model. In the basic equations, ne,i,ν and ue,i,ν are resp.

the electron, ion and neutrino number densities and fluid velocities, and pν = Eνuν/c
2 is the

momentum of the relativistic neutrino beam having and energy Eν , where c is the speed of

light. Moreover, me,i and Pe,i denote the electron-ion masses and fluid pressures and E,B

are the electric and magnetic fields, while the neutrino force Fν is

Fν =
√
2GF (Eν + ue ×Bν) , (7)

where GF the Fermi constant of weak interaction and Eν , Bν are effective fields induced by

the weak interaction,

Eν = −∇nν −
1

c2
∂

∂t
(nνuν) , Bν =

1

c2
∇× (nνuν) , (8)

jointly with

Ee = −∇ne −
1

c2
∂

∂t
(neue) , Be =

1

c2
∇× (neue) , (9)

to be inserted in Eq. (6). Note that only the charged weak current was retained, dis-

regarding the neutral weak current which would lead to a correction of order one to the

terms proportional to GF . This is because electrons are coupled to electron neutrinos by the

charged bosons W±, while both protons and electrons are coupled to all neutrino flavors by

the neutral boson Z. The weak interactions between neutrinos and background electrons is

associated to neutrino angular momentum in a plasma vortex [16] and to electrostatic insta-

bilities in fully degenerate plasmas [17]. A more detailed discussion of the neutrino-plasma

coupling is given in Appendix A, for completeness.

The modifications in comparison with the model in [11] are the inclusion of mobile ions

and of a momentum transfer between electron and ion fluids, as follows from the straight-

forward derivation of fluid equations from for two-species kinetic theory [13–15], described

by the terms Kei,ie which are resp. the rates of change in the electron (ion) fluid momentum

due to collisions with ions (electrons). Notice there’s no electron-electron or ion-ion collision

terms because the electron (ion) fluid can not cause a drag to itself. On the same footing,

there can be no drag of the entire (electron plus ion) MHD fluid, so that, by definition,

Kei + Kie = 0. Therefore, the specific form of the dissipation terms is irrelevant as far as

total momentum conservation is assured, as discussed at length in the common place deriva-

tion of MHD theory [13–15]. Nevertheless, it is useful to adopt the usual phenomenological

expressions

Kei = −meνei(ue − ui) , Kie = −miνie(ui − ue) , (10)
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which are the first order Taylor expansions of the drag terms in powers of the electron and

ion velocities difference, in terms of the collision frequency coefficients νei and νie. Global

momentum conservation in collisions imply meνei = miνie, so that νei ≪ νie since mi ≫ me.

The specific form of the dissipation terms is irrelevant as far as total momentum conservation

is assured, as discussed at length in the common place derivation of MHD theory [14, 15].

Moreover, for simplicity neutrino flavor oscillations are presently disregarded.

Closure is provided by Maxwell’s equations,

∇ · E =
ρ

ε0
, ∇ ·B = 0 ,

∇× E = −∂B

∂t
, ∇×B = µ0J+

1

c2
∂E

∂t
. (11)

where ε0 and µ0 are the vacuum permittivity and permeability and the charge and current

densities are given respectively by

ρ = e(ni − ne) , J = e(niui − neue) . (12)

Eqs. (1)-(11) constitute a complete neutrino-plasma interaction hydrodynamic model

allowing to obtain, among many possibilities, a magnetohydrodynamic formulation where

electron and ion fluids are mixed. For this purpose, we introduce the global mass density

ρm and the global fluid velocity U,

ρm = mene +mini , U =
meneue +miniui

mene +mini

. (13)

Following the standard procedure, taking into account mi ≫ me whenever possible, we

obtain the mass and momentum transport equations,

∂ρm
∂t

+∇ · (ρmU) = 0 , (14)

ρm

(

∂U

∂t
+U · ∇U

)

= − ∇ · Π+ ρE+ J×B

+
(

ρm
mi

− ρ

e

)

Fν . (15)

with the pressure dyad

Π = P I+
memineni

ρm
(ue − ui)⊗ (ue − ui) , (16)

where P = Pe + Pi is the total plasma scalar pressure, I is the identity matrix and ⊗
denotes the tensor product. Following the standard treatment [15], the second term on
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the right-hand side of Eq. (16) will be disregarded in view of scalar pressure dominated

conditions.

Taking the time-derivative of Ampère-Maxwell’s law and using the same procedure of

standard MHD [13–15], a generalized Ohm’s law can be derived,

memi

ρme

∂J

∂t
− mi

ρm
∇P = e(E+U×B)

− mi

ρm
J×B− Fν −

J

σ
, (17)

where σ = ρme
2/(memiνei) is the longitudinal electric conductivity.

In Eqs. (15) and (17) one has the neutrino force (7), which is re-expressed as

Fν =
√
2GF

[

Eν +

(

U− miJ

ρme

)

×Bν

]

, (18)

representing the net neutrino influence on the MHD fluid. The plasma back-reacts on the

neutrino fluid through the effective fields Ee,Be defined in Eq. (9), which are the source

fields in the neutrino moment equation (6).

In view of the extension of the resulting model, extra assumptions should be adopted,

in accordance with the usual procedure but keeping the salient modifications due to the

neutrino beam. Under the simplified and ideal MHD conditions [15], it will be assumed:

(a) formally infinite conductivity σ → ∞, so that local charge unbalance can be disregarded,

or ρ ≈ 0, ne ≈ ni; (b) neglect of the time-derivative of the current density and of the pressure

term in Eq. (17) in view resp. of slow time dependence and magnetic dominated (low-beta)

plasma situation; (c) in the same Eq. (17) we neglect the Hall term ∼ J × B in view of

a high collision frequency in comparison to the gyro-frequency. Keeping this contribution

would correspond to a more complex Hall NMHD [14], which could in principle give rise

to interesting phenomena to be analyzed in the future; (d) disregard relativistic corrections

on MHD equations, since electrons and ions are assumed non-relativistic. In the same

spirit, for waves with phase velocity much smaller than the speed of light, the displacement

current can be neglected in the Ampère-Maxwell law; (e) adoption of the equation of state

∇P = V 2

S∇ρm, where VS is the adiabatic speed of sound.

The above standard assumptions (a)-(e) allow to eliminate the electric field which be-

comes

E = −U×B+ Fν/e , (19)
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containing a neutrino force correction. Moreover, in a non-relativistic electron-ion fluid the

effective fields in (9) simplify to

Ee = −∇ne = −∇ρm/mi , Be = 0 , (20)

where quasi-neutrality was also used.

We are now in a position to enumerate the basic equations of the simplified and ideal

NMHD model. They are: (i) the neutrino continuity equation (5); (ii) the neutrino force

equation (6), re-expressed as

∂pν

∂t
+ uν · ∇pν = −

√
2GF

mi

∇ρm . (21)

(iii) the MHD continuity equation (14); (iv) the MHD force equation (15), re-expressed as

∂U

∂t
+U · ∇U = −V 2

S∇ρm
ρm

+
(∇×B)×B

µ0 ρm
+

Fν

mi

. (22)

(v) Faraday’s law which reads

∂B

∂t
= ∇×

(

U×B− Fν

e

)

, (23)

after eliminating the electric field, and considering the magnetic Gauss’s law as initial

condition. In the model equations, the neutrino force Fν is defined in Eq. (18) where

J = ∇ × B/µ0, containing the effective fields Eν ,Bν found from Eq. (8). In this way we

have a complete set of 11 equations for 11 variables, namely ρm, nν and the components of

U,pν and B.

An immediate possible consequence of the neutrino coupling is that frozen-in magnetic

field lines can no longer exist, in view of the neutrino force in Eq. (23). This qualitatively

new effect comes from the weak force acting on the electrons, and hence on the MHD fluid,

which is the source of the magnetic field itself. However, in quasi-static situations where

U ≈ 0,J ≈ 0 and near equilibrium, the term containing the neutrino “weak” magnetic field

Bν in Eq. (18) is of second-order. Moreover, for subluminal and low-frequency waves the

weak force reduces to Fν = −
√
2GF∇nν , so that ∇×Fν = 0 and the frozen-in condition is

still satisfied as seen from Eq. (23). More general, nonlinear and/or high frequency neutrino

perturbations can produce magnetic field lines diffusion, even in a simplified and ideal MHD

model.
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III. LINEAR WAVES AND INSTABILITIES

It is important to assure the validity conditions of the simplified and ideal NMHD equa-

tions. Since neutrinos are almost always a perturbation, to zeroth order these validity

conditions are the same as for ideal MHD, which are described e.g. in Ref. [13]. Starting

with the two-fluid (electron and ion) species plasma model, a possible justification for a

MHD model (by definition, always an one-fluid model) is provided by a high collisional rate,

or

|ω| ≪ νie , (24)

where |ω|−1 is the time-scale of changes of the MHD flow, ν−1

ie is the time-scale of the ion fluid

momentum changes due to collision against electrons. In addition, the simplified and ideal

MHD equations are valid for high conductivity plasma and a typical MHD speed V << c,

or (as shown in Ref. [13], Eqs. (1.5.2.8))

ε0 |ω|
σ

≪ 1 ,
ε0 V

σ L
≪ 1 , (25)

where L is a characteristic length scale. In astrophysical settings only the first in (25)

can pose difficulties. In view of the expression of the conductivity below Eq. (17), the

combination of Eqs. (24) and (25) expressed in terms of νei is

mi |ω|
me

≪ νei ≪
ω2

pe

|ω| , (26)

where for an equilibrium number density n0 one has ρm ≈ n0mi and where ωpe =
√

n0e2/(meε0). To summarize, the first inequality in Eq. (26) assures the description

of a single conducting fluid; the second inequality assures ideality so that there is no wave

damping in this framework (also viscous effects are disregarded). Nevertheless, it should

be keep in mind that by definition kinetic effects such as electron and neutrino Landau

damping are not included in an hydrodynamic model.

Equation (26) can be expressed in terms of more specific physical parameters using (Ref.

[18], chapter V) the Landau electron-electron collision frequency

νee ≈ νei =
2ωpe

3

lnΛ

Λ
, Λ = 4πn0λ

3

D/3 , λD = vT/ωpe , (27)

where vT =
√

2κBTe/me is the thermal speed for an electron fluid temperature Te and κB is

the Boltzmann constant. These expressions apply for slight degeneracy and relativistic ef-

fects for electrons. Implicitly, a weak coupling condition Ω ≫ 1 is also assumed (equivalently,
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νei ≪ ωpe). Then from Eqs. (26) and (27) we get in a dimensionless form

mi

me

|ω|
ωpe

≪ 2

3

lnΛ

Λ
≪ ωpe

|ω| . (28)

Alternative closure schemes not based on collisional estimates but e.g. on a high magnetic

field assumption [19] will be not addressed here, for simplicity. A more detailed discussion

of the validity conditions for ideal magnetohydrodynamics can be found e.g. in Ref. [20],

chapter VII.

As an illustration of decisive consequences of the neutrino coupling, small amplitude

perturbations around an homogeneous magnetized equilibrium ρm = ρm0, nν = nν0, U =

0, pν = pν0, B = B0 will be analyzed. Linearizing Eqs. (5), (14) and (21)-(23) considering

plane waves of frequency ω, wave-vector k the result is

ω2δU =

(

V 2

S + V 2

A +V 2

N

(c2k2 − (k · uν0)
2)

(ω − k · uν0)2

)

(k · δU)k

+ (k ·VA)
(

(k ·VA)δU− (δU ·VA)k

− (k · δU)VA

)

, (29)

after eliminating all variables except the MHD fluid velocity perturbation δU. Whenever

harmless, the low frequency assumption ω/k ≪ c was used. In Eq. (29), the vector Alfvén

velocity VA and a new characteristic “neutrino speed” VN were employed. These are given

by

VA =
B0

(ρm0µ0)1/2
, VN =

(

2G2

Fρm0nν0

m2
iEν0

)1/2

, (30)

where Eν0 is the equilibrium neutrino beam energy so that pν0 = Eν0uν0/c
2. It is interest-

ing to note that VN is determined by both MHD and neutrino variables, emphasizing the

coupling between them. Equation (29) is the standard general MHD dispersion relation (as

shown in Eq. (2.21) in Ref. [15]), except for the neutrino contribution.

From inspection of the dispersion relation (29), it is seen that purely transverse waves

with k ⊥ VA and k ⊥ δU are not affected by the neutrino beam. Hence Alfvén waves are

not perturbed, at least under the present set of approximations. If instead we consider the

important case of magnetosonic (fast Alfvén) waves with k ⊥ VA and k ‖ δU a neutrino-

driven instability is found. For generality, an angle θ between the wave propagation and

the neutrino beam can be allowed, as shown in Fig. 1, so that k · uν0 = k uν0 cos θ. The
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dispersion relation then reduces to
(

ω

k
− uν0 cos θ

)2
(

ω2

k2
− V 2

S − V 2

A

)

= V 2

N(c
2 − u2

ν0 cos
2 θ) . (31)

The right-hand side of Eq. (31) can be taken as a perturbation. Therefore, focusing on the

unstable mode we consider the neutrino-beam mode ω = k uν0 cos θ + iγ, where γ is much

smaller than the magnetosonic frequency Ω ≡ (V 2

S + V 2

A)
1/2k. The approximate solution is

γ =
VNk(c

2 − u2

ν0 cos
2 θ)1/2

(V 2
S + V 2

A − u2
ν0 cos

2 θ)1/2
, (32)

pointing for an instability (γ > 0) provided V 2

S + V 2

A > u2

ν0 cos
2 θ. In view of the ultra-

relativistic neutrinos (uν0 ≈ c), the instability is more likely for perpendicular propagation,

θ = π/2. In this case, the ultra-relativistic neutrino beam velocity appears only implicitly,

by means of the neutrino beam energy Eν0 contained in VN . Specific features were identified,

namely: the instability is larger for uν0 ⊥ k and is suppressed for parallel propagation; as

expected, the instability is larger for denser neutrino beam and smaller ambient magnetic

field. In addition, the growth rate turns out to scale as γ ∼ VN ∼ GF , which is much larger

than typical electrostatic neutrino-plasma beam instabilities [2, 6] which have no connection

with the ambient magnetic field.

FIG. 1. Geometry for the instability shown in Eq. (32).

In the case of perpendicular neutrino propagation (θ = π/2) and neglecting the adiabatic

sound speed in comparison to the Alfvén speed in a strongly magnetized plasma, the result

is

γ =
(

2nν0

ε0Eν0

)1/2 GFn0k

B0

. (33)
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Using the Fermi constant GF = 1.45 × 10−62 J.m3, for hydrogen plasma and typical [8]

supernova parameters nν0 = 1035 m−3 which is the same as the MHD fluid number den-

sity and Eν0 = 10MeV, perpendicular neutrino propagation (θ = π/2) and neglecting the

adiabatic sound speed in comparison to the Alfvén speed in a strongly magnetized plasma,

the result is γ = 172.33 k/B0,Ω = 6.90 × 10−2B0k, where S. I. units are employed. In this

case one has γ/Ω = 2.50 × 103B−2

0 ≪ 1 for the strong magnetic fields B0 ≈ 106 − 108 T

appearing in core-collapse events. Hence the growth rate is much smaller than the mag-

netosonic frequency, justifying the approximation used in the derivation of Eq. (32). One

might consider magnetic field strengths below the electron Schwinger critical QED field

Bc = m2

ec
2/(eh̄) = 4.42× 109 T, but large enough to discard VS ≪ VA.

For the sake of illustration, one might consider κBTe = 0.1MeV, so that Λ = 487.38,

ωpe = 1.78 × 1019 s−1, νei = 1.51 × 1017 s−1. The chain of inequalities (28) becomes, with

|ω| ≈ γ and for electron-proton plasma for simplicity,

1.77× 10−14k/B0 ≪ 8.47× 10−3 ≪ 1.03× 1017B0/k , (34)

which is well attended for any reasonable wavenumber for the strong magnetic fields of in-

terest. Therefore the simplified and ideal MHD conditions are satisfied. Just as an example,

one might consider B0 = 106 T and a wavelength λ = 2π/k = 1nm in the soft X-ray range.

Then from Eq. (33) one has γ = 1.08 × 106 s−1. This could to be compared to the time-

scale (around 1 sec.) of the supernova explosion. Hence the new neutrino-driven instability

is fast enough to be an excellent candidate to trigger the cataclysmic event. In addition,

VA = 69.03 km/s, VN = 3.97×10−8 m/s. For the same parameters set except that the Alfvén

velocity and adiabatic speed of sound are left free, one might calculate the growth rate from

the unstable branch of the dispersion relation (31) as a function of the magnetosonic speed

V =
√

V 2
S + V 2

A as shown in Fig. 2.

One might for instance put on question the neglect of the displacement current. However,

one has
ε0|∂E/∂t|

σ|E| ∼ ε0γ

σ
∼ νei γ

ω2
pe

≪ 1 (35)

which is automatically satisfied in view of the last inequality in Eq. (26). Another concern

is about possible mechanisms for the anisotropic neutrino velocities distribution associated

to the neutrino beam, which have been discussed elsewhere [21]. In particular, far from the

the neutrinosphere there is a small angular spread of the radially directed neutrino beam.
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Moreover in type II supernovae, the neutrinos are known to be sufficiently collimated to

provide a suitable electrostatic instability mechanism [22].

0 20 40 60 80

1

2

3
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5

V Hkm�sL

Γ
H1

06
s-

1 L

growth rate

FIG. 2. Growth rate from Eq. (31) as a function of the magnetosonic speed V =
√

V 2
S + V 2

A.

Parameters: θ = π/2, VN = 3.97× 10−8m/s, k = 2π × 109m−1.

The above results are wavenumber-dependent. For more generality one might consider

θ = π/2 for simplicity, so that γ = VNc k/V clearly satisfying the low-frequency assumption

γ/(V k) = VNc/V
2 ≪ 1 except for extremely small magnetosonic speeds. The result shown

in Fig. 3 imply a smaller growth rate for longer wavelengths, but still attaining appreciable

values for typical parameters.

IV. CONCLUSIONS

To summarize, a NMHD model was introduced and analyzed in more detail in the sim-

plified and ideal conditions. The neutrino component was shown to be a suitable source of

magnetic field lines diffusion. In addition, a new neutrino-driven instability was found, asso-

ciated with the magnetosonic wave geometry. The instability rate FVcan be rather large in

core-collapse supernova scenarios, increasing for shorter wavelengths. The full investigation

of the dispersion relation (29) as well as of further ingredients such as finite conductivity,

displacement current, Hall NMHD dynamics and nonlinear effects is a fruitful avenue for

future research.
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V =
√

V 2
S + V 2

A. Parameters: θ = π/2, VN = 3.97× 10−8m/s.
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Appendix A: Notes on the electron-neutrino interaction

For completeness and for the convenience of the reader, it is useful to briefly review the

key points regarding the electroweak interaction terms in Eqs. (2) and (6). The presentation

follows the style of Ref. [23], which contains a more thorough discussion. In addition, in

particular, Refs. [6, 10, 24] were also followed.

In the semiclassical approximation, the interaction Lagrangian for a neutrino in an elec-

tron background reads

Lint = −GF√
2

(

ne −
Je · vν

c2

)

(CV + 1) , (A1)

where Je = neue, vν is the neutrino velocity and CV = 1/2+ 2 sin2 θW is the vector-current

coupling constant, where θW is the Weinberg mixing angle, with sin θW ≃ 1/2. Therefore,

CV ≃ 1. The semiclassical approximation is satisfactory as long as the neutrino de Broglie

wavelength λν = 2πh̄/pv (pν is the neutrino momentum) is much shorter than the typical
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oscillation length scales. This assumption is expected to be safely true for ultra-relativistic

neutrinos.

The full Lagrangian for a neutrino includes the free Lagrangian L0 for a spinless massive

particle, so that

L = L0 + Lint = −mνc
2

√

1− v2ν/c
2 −

√
2GF

(

ne −
Je · vν

c2

)

, (A2)

where mν is the neutrino mass.

The Hamiltonian formulation is found [23] to be more straightforward to build a theory

of the electrons and neutrinos coupling. Therefore, we compute the neutrino canonical

momentum,

Pν =
∂L
∂vν

= pν +
√
2
GF

c2
Je , pν =

mνvν
√

1− v2ν/c
2

, (A3)

and the Hamiltonian,

H = Pν · vν − L =

√

(

Pνc−
√
2
GF

c
Je

)2

+m2
νc

4 + Veff , (A4)

where Veff =
√
2GFne is an effective repulsive potential between neutrinos and the plasma

electrons.

In component-wise form, the canonical momentum equation is

dPν i

dt
= −∂H

∂ri
= −∂Veff

∂ri
+
√
2GF

3
∑

j=1

(Pν j −
√
2GFJe j/c

2)
√

(Pνc−
√
2GF Je/c)2 +m2

νc
4

∂Je j
∂ri

= −∂Veff

∂ri
+
√
2
GF

c2

3
∑

j=1

vν j
∂Je j
∂ri

, i = 1, 2, 3, vν =
dr

dt
. (A5)

Using Eqs. (A3) and (A5) the equation for the mechanical momentum is found to be

dpν i

dt
= −

√
2GF





∂ne

∂ri
+

1

c2
∂Jei
∂t

+
3
∑

j=1

vν j

c2

(

∂Je i
∂rj

− ∂Je j
∂ri

)



 , (A6)

which, after a rearrangement, accounts for the neutrino momentum transport equation (6).

Although the above derivation applies to a single neutrino, the fluid description follows in

the spirit of the wave packet formalism [25] and the replacement vν → uν , the neutrino

fluid velocity. An alternative approach for the same problem starts from the kinetic theory

for neutrinos in an ionized medium [23], which is justified by Finite Temperature Quantum

Field Theory methods [26].
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So far, only the effect of the plasma electrons on neutrinos has been studied. It is found

that the neutrino bunching due to the interaction with the collective modes causes a neutrino

fluid pressure gradient, and hence gives rise to a ponderomotive force on the electron fluid.

We refer the reader to Eq. (20) of Ref. [23] and the associated reasoning around it, for the

detailed derivation of the neutrino ponderomotive force Fν in our Eqs. (2) and (7).
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