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Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brasil
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Abstract

The destabilizing role of neutrino beams on the Trivelpiece-Gould modes is considered, assuming

electrostatic perturbations in a magnetized plasma composed by electrons in a neutralizing ionic

background, coupled to a neutrino species by means of an effective neutrino force arising from the

electro-weak interaction. The magnetic field is found to significantly improve the linear instability

growth rate, as calculated for Supernova type II environments. On the formal level, for wave vector

parallel or perpendicular to the magnetic field the instability growth rate is found from the un-

magnetized case replacing the plasma frequency by the appropriated Trivelpiece-Gould frequency.

The growth rate associated with oblique propagation is also obtained.

PACS numbers: 13.15.+g, 52.35.Pp, 97.60.Bw
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I. INTRODUCTION

There is a continuous interest on the neutrino-plasma interaction in magnetized me-

dia. For instance, it has been suggested [1]–[4] that neutrino bursts could transfer energy-

momentum to the magnetized plasma around the core of the supernovae, triggering the

stalled shock expansion therein. Strong wakefields driven by neutrino bursts in magnetized

electron-positron plasma have been reported [5]. The Mikheilev-Smirnov-Wolfenstein ef-

fect of neutrino flavor conversion is significantly influenced by strong magnetic fields, with

possible implications on supernova evolution and other magnetized media [6]. Spin waves

destabilized by neutrino beams in magnetized plasma [7], the linear spectrum in magnetized

electronpositron coupled to neutrino-antineutrino species in the early universe and neutrino

cosmology [8], the neutrino effective charge in magnetized pair plasma [9], neutrino emis-

sion via collective processes in magnetized plasma [10], nonlinear generation of waves by

neutrinos in magnetized plasmas [11, 12], the neutrino destabilizing effects on magnetosonic

waves described by neutrino magnetohydrodynamics model [13] and the coupling between

neutrino flavor oscillations and ion-acoustic waves [14] have been reported. In astrophysical

plasmas in general, intense neutrino beams are ubiquitous, as in the lepton era of the early

universe [15].

Trivelpiece-Gould modes [16] are one of the basic waves in magnetized plasma, charac-

terized by electrostatic excitations only (no magnetic field perturbations), for an electron

plasma in an homogeneous ionic background. Therefore, the treatment of Trivelpiece-Gould

modes allowing for neutrino-plasma coupling has an intrinsic relevance, besides astrophysi-

cal applications. The solution of the problem was not performed yet and this is the goal of

the work. Notice that according to the original article [16], Trivelpiece-Gould modes were

deduced allowing for arbitrary angle between the external magnetic field and wave vector,

see also e.g. [17] (p. 107).

Following the usual approach to neutrino-plasma interactions (see e.g. [18] for a review),

a macroscopic, fluid modeling is adopted, in spite of the weakly collisional character of the

system. The reasons for this start from the fact that the macroscopic equations are quasi-

exact conservation laws, irrespective of the microphysics. Moreover, we put an emphasis

on the collective aspects rather than on inter-particle phenomena such as collisions. This

is justified, since e.g. it is known that the effective ponderomotive force of neutrinos on
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the plasma far exceeds the contribution from single neutrino-electron scattering [19]. Be-

sides, for hydrodynamic, reactive instabilities kinetic effects such as electron and neutrino

Landau damping are not relevant. Therefore a sufficiently long wavelength is necessary, as

should be verified in concrete cases. However, in later stages when the reactive instabil-

ity saturates, the kinetic regime can becomes important, and accessible only by means of

microscopic approaches. In addition, note that the use of fluid equations for systems with

small collisionality is also traditional for classical plasmas, whenever justified according to

the above general lines. For instance, one can consider the treatment of collisionless shocks

by hydrodynamic equations [20]. Finally, the analytical and numerical treatment of kinetic

theories is often too heavy.

The article is organized as follows. In Section II the basic model equations are proposed.

In Section III the general dispersion relation is obtained. Section IV treats two notable

subcases: wave propagation perpendicular and parallel to the external magnetic field. The

destabilization and growth rate of the corresponding Trivelpiece-Gould modes is then derived

and calculated in astrophysical scenarios. Section V contains the oblique propagation case.

Section VI has our conclusions. Appendix A is reserved to the complete expressions of the

neutrino number density and velocity field perturbations.

II. PHYSICAL MODEL

The system is described by an hydrodynamical model for electrons and neutrinos, in an

homogeneous ionic background. Denoting ne,ν and ue,ν as respectively the electron (e) and

neutrino (ν) fluid densities (in the laboratory frame) and velocity fields, one will have the

continuity equations

∂ne

∂t
+∇ · (neue) = 0 ,

∂nν

∂t
+∇ · (nνuν) = 0 , (1)

together with the (non-relativistic) electron force equation

me

(

∂

∂t
+ ue · ∇

)

ue = − ∇p

ne

− e (−∇φ+ ue ×B0) +
√
2GF (Eν + ue ×Bν) , (2)
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and the neutrino force equation

∂pν

∂t
+ uν · ∇pν =

√
2GF

(

−∇ne −
1

c2
∂

∂t
(neue) +

uν

c2
× [∇× (neue)]

)

, (3)

where pν = Eνuν/c
2 is the neutrino relativistic momentum for a neutrino beam energy Eν .

In Eq. (2), me is the electron mass, −e is the electron charge, p = p(ne) is the electron

fluid pressure, GF is Fermi’s coupling constant, and Eν ,Bν are effective neutrino electric

and magnetic fields given by

Eν = −∇nν −
1

c2
∂

∂t
(nνuν) , Bν =

1

c2
∇× (nνuν) , (4)

where c is the speed of light. In this work we consider electrostatic excitations with scalar

potential φ described by Poisson’s equation with a neutralizing background n0,

∇2φ =
e

ε0
(ne − n0) , (5)

where ε0 the vacuum permittivity constant, in the presence of an homogeneous magnetic

field B0 as apparent in the magnetic force in Eq. (2). However, there are no magnetic field

perturbations. Without neutrinos, this setting gives rise to the Trivelpiece-Gould modes

[16]. Our goal is to investigate the role of a neutrino beam free energy in this context.

The present model was introduced, without ambient magnetic field, in [21]. For simplicity,

neutrino flavor oscillations are not taken into account.

III. LINEAR WAVES

We have the homogeneous static equilibrium

ne = n0 , ue = 0 , nν = nν0 , uν = uν0 , φ = 0 , (6)

where nν0 and uν0 are respectively the equilibrium neutrino number density and velocity

field, assumed to be constant. Linearizing the model equations in terms of plane wave

perturbations ∼ exp[i(k · r − ωt)], denoting fluctuations with a delta as for instance in
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ne = n0 + δne exp[i(k · r− ωt)], one readily find

ω δne = n0 k · δue , (ω − k · uν0) δnν = nν0 k · δuν , (7)

me ω δue =
1

n0

(

dp

dne

)

0

k δne − e (k δφ+ i δue ×B0)

+
√
2GF

(

(k− ω

c2
uν0) δnν −

ωnν0

c2
δuν

)

, (8)

(ω − k · uν0)δpν =
√
2GF

(

kδne −
n0 ω

c2
δue −

n0

c2
uν0 × (k× δue)

)

, (9)

−k2δφ =
e

ε0
δne . (10)

Notice that in Eq. (9), δue appears already in a term proportional to GF . Since there is

no need to include very small higher order corrections, in Eq. (9) we need only the classical

δue = δuC
e obtained setting GF = 0 in Eq. (8), namely,

δuC
e =

δne

n0

V 2

ω(ω2 − ω2
c )

(

ω2 k− (k · ωc)ωc + i ωωc × k
)

, (11)

where

V 2 = v2T +
ω2
p

k2
, v2T =

1

me

(

dp

dne

)

0

, ω2

p =
n0e

2

meε0
, ωc =

eB0

me

. (12)

The trick is to substitute δue → δuC
e in Eq. (9), to obtain δpν and then δuν correct up to

O(GF ). Using the neutrino continuity equation, this will give δnν also up to O(GF ). The

recursive procedure allows to rewrite Eq. (8) as

ω δue + i δue × ωc =
V 2 k δne

n0

+ ω δvν , (13)

where δvν contains all neutrino effects,

δvν ≡
√
2GF

meω

(

(k− ω

c2
uν0) δnν −

nν0 ω

c2
δuν

)

. (14)

By construction, δvν will be of order O(G2
F ), since δnν and δuν are O(GF ) by the procedure,

whose ultimate expressions are shown in Appendix A. The same formulae show δnν and δuν

as directly proportional to δne. The solution to Eq. (13),

δue = δuC
e +

1

(ω2 − ω2
c )

(

ω2δvν − (ωc · δvν)ωc + i ωωc × δvν

)

(15)
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yields δue proportional to δne and valid up to O(G2
F ). Finally, substituting Eq. (15) into the

electrons continuity equation, one derive the linear dispersion relation of Trivelpiece-Gould

modes modified by a neutrino beam. As a remark, note that in Eq. (11) and afterward it

is assumed ω2 6= ω2
c , with no real loss of generality since the possible mode with ω2 = ω2

c is

neutrino-independent, see Section IVb.

Proceeding as explained gives

δpν =

√
2GF δne

(ω − k · uν0)(ω2 − ω2
c )

×

×
[

(ω2 − ω2

c )k− V 2

c2

(

ω2k− (k · ωc)ωc + i(ω − k · uν0)ωc × k (16)

− k · ωc

ω
uν0 × (k× ωc) + ik [uν0 · (ωc × k)]

)]

.

On the other hand, the neutrino velocity perturbation is derived from δpν according to

δuν =
c2

Eν0

(

δpν −
uν0 · δpν

c2
uν0

)

, (17)

as found from the relativistic energy-momentum relation, where Eν0 is the zero-order neutrino
beam energy. Using Eqs. (16) and (17) we derive a long expression for δuν , which in turn

gives δnν from Eq. (7). These expressions are shown in the Appendix A, allowing to

determine δvν as proportional to δne.

Without loss of generality, assuming the ambient magnetic field along the z−axis and a

wave vector in the x− z plane, as shown in Figure 1, so that

ωc = ωc ẑ, k = k (sin θ, 0, cos θ) . (18)

One then has implicitly the dispersion relation

(

ω4 − ω2

Hω
2 + ω2

pω
2

c cos
2 θ

)

δne = n0ω
(

ω2k · δvν − (k · ωc) (ωc · δvν) + iωk · (ωc × δvν)
)

=

√
2GFn0

mec2

[

ω2

(

c2k2 − ω2

)

δnν − c2(k · ωc)
2δnν

+ ω(k · ωc) (ωc · uν0)δnν + nν0ω (k · ωc) (ωc · δuν)

− iω2 k ·
(

nν0 ωc × δuν + ωc × uν0 δnν

)]

, (19)

6



in terms of the upper hybrid frequency ωH =
√

ω2
p + ω2

c . The neutrino continuity equation

was used to eliminate k ·uν0. The quantities δuν and δnν are both long expressions propor-

tional to δne as shown in Eqs. (A1) and (A2) in the Appendix. Therefore, for δne 6= 0, one

obtains the dispersion relation from Eq. (19).

Without neutrinos (δvν ≡ 0) one would regain the Trivelpiece-Gould dispersion relation

[16, 17], namely ω4 − ω2
Hω

2 + ω2
pω

2
c cos

2 θ = 0. For simplicity, at this point it was assumed

ωp ≫ kvT so that V ≈ ωp/k, yielding a nicer expression for the classical contribution i.e.

the left-hand side of Eq. (19). Thermal effects can be recovered through the systematic

replacement ω2
p → ω2

p + k2v2T .

FIG. 1: Geometry of Trivelpiece-Gould modes.

We note that in the unmagnetized case (ωc = 0) using Eq. (19) together with the

appropriate special case from Eq. (A2) gives the same found in [21–23], namely

ω2 = ω2

p +
∆(c2k2 − ω2

p)
2

(ω − k · uν0)2
×
(

1− (k · uν0)
2

c2k2

)

, (20)

introducing the dimensionless quantity

∆ =
2G2

F n0 nν0

me c2 Eν0
. (21)

To obtain Eq. (20), in the numerator of the term proportional to ∆ it was replaced the

unperturbed approximation ω ≈ ωp whenever convenient, since this neutrino term is already

a correction. To proceed to the magnetized case, observe that the neutrino contribution in
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Eq. (19) can be relevant only within a resonance condition where Re(ω) ≈ k ·uν0, due to the

small value of the Fermi constant GF = 1.45×10−62 J.m3. By construction, our calculations

retain terms up to O(∆).

Before embarking in the general case, two subcases are illustrative: wave propagation

perpendicular or parallel to the ambient magnetic field, as discussed in the next Section.

IV. PARTICULAR SUBCASES

A. Wave propagation perpendicular to the ambient magnetic field

Supposing upper hybrid oscillations with k ⊥ ωc and ω 6= 0, one finds from Eqs. (19),

(A1) and (A2),

ω2 − ω2

H −∆ω2

c =
∆

(ω − k · uν0)2

(

1− ω2

c2k2

)

×

×
[(

c2k2 − ω2

)(

c2k2 − (k · uν0)
2

)

+
(

uν0 · (ωc × k)
)2]

− ∆ω2
c (ω

2 − ω2
H)

ω2 − ω2
c

+
∆(c2k2 − (k · uν0)

2)ω2

(ω − k · uν0)2(ω2 − ω2
c )

(

1− ω2

c2k2

)

(ω2 − ω2

H)

−
∆
(

uν0 · (ωc × k)
)2

(ω − k · uν0)2(ω2 − ω2
c )

(

1− ω2

c2k2

)

(ω2 − ω2

H)

+ i
∆
(

uν0 · (ωc × k)
)(

c2k2 − (k · uν0)ω
)

(ω − k · uν0)2(ω2 − ω2
c )

(ω2 − ω2

H) . (22)

The right-hand side of Eq. (22) is always a perturbation due to the very small value of the

Fermi constant and it is legitimate to replace in it ω2 → ω2
H whenever possible and useful.

In particular, this substitution allows to discard the explicit imaginary contribution which is

proportional to ∆ (ω2−ω2
H) ≈ 0 within the accuracy of the approximation. The replacement

is supported by the numerical results too. We are left with

ω2 − ω2

H −∆ω2

c =
∆

(ω − k · uν0)2

(

1− ω2

c2k2

)

×

×
[(

c2k2 − ω2

)(

c2k2 − (k · uν0)
2

)

+
(

uν0 · (ωc × k)
)2]

. (23)

The non-resonant term ∆ω2
c on the left-hand side of Eq. (23) is always very small for
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realistic conditions, so that it can be dropped too. The right-hand side of the same equation

can yield a significant contribution, provided the neutrino beam becomes resonant with the

upper-hybrid frequency, so that we set

ωH = k · uν0 , ω = ωH + δ , |δ| ≪ ωH , (24)

converting Eq. (23) into

ω2 = ω2

H +
∆

(ω − k · uν0)2
×
[

(

c2k2 − ω2

H

)2
+ (uν0 · (ωc × k))2

]

×
(

1− ω2
H

c2k2

)

, (25)

which is almost Eq. (20) with the replacement ωp → ωH appropriated to the magnetized

case.

To enhance the neutrino contribution in Eq. (25), ideally one would have ωH ≪ ck. In

the non magnetized case, to avoid Landau damping, one also need ω ≫ 〈k · ve〉, where 〈〉
denotes the statistical average of the electrons velocities ve. For almost isotropic electrons

equilibrium, it amounts to ω ≫ kvT . This sets [21–23] an upper limit in the wave-number

or k = ω/vT at which the instability saturates due to electron Landau damping. Although

not mandatory, we define k = ω/vT ≈ ωH/vT in the magnetized case, to access an easier

comparison with the unmagnetized results. Notice that now cyclotron Landau damping is

significant for ω ≈ lωc, where l is an integer. Such exceptional, damped modes would be

described within a kinetic treatment, which is outside the present model.

In the present context it can be defined

k = (k, 0, 0) , ωc = (0, 0, ωc) , uν0 = uν0(cosϕ sinΘ, sinϕ sinΘ, cosΘ) , (26)

where for ultra-relativistic neutrinos uν0 ≈ c. As argued above, setting the wave-number

k ≡ ωH/vT transforms Eq. (25) into

ω2 = ω2

H +
∆ω4

H c4/v4T
(ω − k · uν0)2

[

(

1− v2T
c2

)2

+
ω2
cv

2
T

ω2
Hc

2
sin2 ϕ sin2 Θ

]

. (27)

In view of ω2
c < ω2

H and the non-relativistic assumption v2T ≪ c2 , Eq. (27) can be approxi-
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mated by

ω2 = ω2

H +
∆ω4

H c4/v4T
(ω − k · uν0)2

, (28)

exactly the same as the non-magnetized result in Eq. (20) for the maximal neutrino pertur-

bation, provided replacing ωp → ωH . Moreover, using Eq. (24) it is found

(

δ

ωH

)3

=
∆

2

(

c

vT

)4

, (29)

which corresponds to an unstable mode with

Im

(

δ

ωH

)

=
√
3∆1/3

(

c

2vT

)4/3

> 0 . (30)

Presently the result (30) is the same as the maximal instability growth rate of Refs. [21–23],

with the simple replacement of the plasma frequency by the upper hybrid frequency. Since

ωH > ωp, one has an even stronger instability in the magnetized case. Moreover, denoting

φ as the angle between k and uν0, from the resonance condition we find cosφ ≈ ωH/(ck) ≈
vT/c ≪ 1, showing that the neutrino beam propagates almost perpendicularly to the wave

- but without a definite orientation regarding the external magnetic field.

For typical Type II core-collapse scenarios such as for the supernova SN1987A, one has

a neutrino burst of 1058 neutrinos with energies around 10 − 15 MeV [24]. To get some

estimates, take Eν0 = 10MeV, vT/c = 1/10, n0 = 1034 m−3, appropriate for the center of the

star. Moreover, in core-collapse events one has strong magnetic fields B0 ≈ 106 − 108 T,

and we take B0 = 5 × 107 T. For these parameters, we have ωp = 5.64 × 1018 rad/s, a

gyrofrequency ωc = 8.78 × 1018 rad/s, and ωH = 1.04 × 1019 rad/s, showing the salient

role of magnetization. The instability growth rate from Eq. (30) is shown in Figure 2 as

a function of the neutrino beam density nν0 between 1034 − 1037 m−3. Typically, one has

1/Im(δ) ≈ 10−11 s, to be compared with the characteristic time of supernova explosions,

around 1 second.
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FIG. 2: Instability growth rate from Eq. (30) for Eν0 = 10MeV, vT /c = 1/10, n0 = 1034m−3, B0 =

5× 107T, as a function of neutrino beam number density nν0, for k ⊥ ωc.

B. Wave propagation parallel to the ambient magnetic field

When k ‖ ωc, or θ = 0◦, Eq. (19) simplifies to

(ω2 − ω2

c )(ω
2 − ω2

p)δne =

√
2GFn0

mec2
(ω2 − ω2

c )(c
2k2 − ω2)δnν . (31)

By inspection, the classical mode with ω2 = ω2
c has no neutrino contribution so that it will

be ignored. Therefore we can replace ω2 ≈ ω2
p 6= ω2

c on the right-hand side of Eq. (31) to

obtain

(ω2 − ω2

p)δne =

√
2GFn0

mec2
(c2k2 − ω2

p)δnν , (32)

a result which could be directly confirmed from Eqs. (7), (8) and (10). Now using Eq. (A2)

for δnν , from Eq. (32) we rederive Eq. (20). Therefore for parallel propagation the ambient

magnetic field does not modify the instability at all. Proceeding as usual, setting

ωp = k · uν0 , ω = ωp + δ , |δ| ≪ ωp , (33)

the unstable mode is found with

(

δ

ωp

)3

=
∆

2

(1− cos2 φ)3

cos4 φ
, (34)
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where φ is the angle between k and uν 0 so that ωp ≈ ck cosφ. For parallel propagation

(k ‖ B0) the issue of Landau damping becomes relevant for resonant particles gyrating

around the magnetic field with the same angular frequency as the wave electric field, or

ω − lωc − kvz ≈ 0, where l is an integer and vz is the component of the electrons velocity

in the direction of B0. For the fundamental mode (l = 0) and quasi isotropic particle

distribution function one then needs k << ωp/vT and so cosφ >> vT/c. Finally, one

obtains

Im

(

δ

ωp

)

=
√
3∆1/3

(

c

2vT

)4/3

> 0 , (35)

which is well documented in the literature [21–23] and where cosφ ≈ vT/c << 1 was selected.

In this sense, Eq. (35) is the upper limit of the instability growth rate, avoiding Landau

damping.

It is interesting to compare with the magnetic field dominated case. Using Eq. (35) and

exactly the same parameters of subsection IVA, one get the result shown in Fig. 3, showing

a significantly smaller (but still fast) instability growth rate when compared to Fig. 2. The

main conclusion is that a strong ambient magnetic field can have a marked impact on the

neutrino-plasma unstable mode, at least for certain wave vector orientations.
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FIG. 3: Instability growth rate from Eq. (35) for Eν0 = 10MeV, vT /c = 1/10, n0 = 1034m−3, as a

function of neutrino beam number density nν0, for k ‖ ωc.
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V. GENERAL CASE

For arbitrary angle θ, Eq. (19) becomes more demanding. To start solving it, notice that

from inspection of Eqs. (A1) and (A2) at resonance the terms containing δuν ∼ (ω−k·uν0)
−1

in Eq. (19) are generically less singular than those with δnν ∼ (ω − k · uν0)
−2. In this way,

dropping the δuν terms, the linear dispersion relation can be simplified to

(ω4 − ω2

Hω
2 + ω2

pω
2

c cos
2 θ) δne =

√
2GFn0

mec2

[

ω2(c2k2 − ω2)− c2(k · ωc)
2 +

+ ω(k · ωc)(ωc · uν0)− iω2k · (ωc × uν0)
]

δnν . (36)

Moreover, at resonance (ω ≈ k · uν0) it is possible to considerably simplify Eq. (A2) as

δnν =

√
2GFnν0δne

Eν0(ω − k · uν0)2(ω2 − ω2
c )

×
(

1− ω2

c2k2

)

×

×
[

(ω2 − ω2

c )c
2k2 − ω2ω2

p +
ω2
p

ω
(k · ωc)(uν0 · ωc)− iω2

p[uν0 · (ωc × k)]
]

. (37)

Inserting (37) into Eq. (36) and replacing whenever convenient the zero-order expression

(k · ωc)
2 ≈ k2ω2(ω2

H − ω2)/ω2
p in the neutrino term, it is found after some rearrangements

that

ω4 − ω2

Hω
2 + ω2

pω
2

c cos
2 θ =

∆

(ω − k · uν0)2(ω2 − ω2
c )

×
(

1− ω2

c2k2

)

×

×
{[ ω

ωp

(

(ω2 − ω2

c )c
2k2 − ω2

pω
2

)

+ ωp(k · ωc)(uν0 · ωc)
]2

+ (38)

+ ω2

pω
2[uν0 · (ωc × k)]2 + ic2k2[uν0 · (ωc × k)]

(

ω4 − ω2

Hω
2 + ω2

pω
2

c cos
2 θ

)}

.

As verified, the explicitly imaginary part in Eq. (39) vanishes in the order of accuracy of

the calculation since ω4 − ω2
Hω

2 + ω2
pω

2
c cos

2 θ = O(∆). Hence the final general dispersion

relation reads

ω4 − ω2

Hω
2 + ω2

pω
2

c cos
2 θ =

∆

(ω − k · uν0)2(ω2 − ω2
c )

×
(

1− ω2

c2k2

)

× (39)

×
{[ ω

ωp

(

(ω2 − ω2

c )c
2k2 − ω2

pω
2

)

+ ωp(k · ωc)(uν0 · ωc)
]2

+ ω2

pω
2[uν0 · (ωc × k)]2

}

.

Moreover: (a) for k ‖ ωc it can be used uν0 · ωc = (k · uν0)ωc/k ≈ ωpωc/k in the neutrino
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term, reducing Eq. (39) to Eq. (20); (b) for k ⊥ ωc and with ω ≈ ωH , Eq. (39) reduces to

Eq. (25).

Despite the fact that the general result encompasses the subcases of Section IV, it was

useful to provide a more detailed treatment of some particular geometries, in view of the

not so transparent algebra involved in Eq. (39). Nevertheless, the power of the general

dispersion relation is that it gives the perturbation of Trivelpiece-Gould modes by neutrino

effects for arbitrary angular orientation of wave vector, neutrino beam and ambient magnetic

field.

To enhance the neutrino contribution in Eq. (39) one has ω ≈ k · uν0 ≪ ck. At the

same time, Landau damping is relevant for resonant particles with ω− lωc−kzvz ≈ 0, where

kz = k cos θ. To avoid this in the case of the fundamental mode (l = 0) one then needs

k << ω/(vT cos θ) or just k << ω/vT , for simplicity and similarly to the previous choices.

In this context, as before we set the wave-number k = ω/vT , similarly to Eq. (35), with the

understanding that the obtained growth rate estimate is the upper limit of it.

It can be verified that neutrino beam velocities compatible with |uν0| ≈ c ≫ vT = ω/k =

k · uν0/k are given by

uν0 = (vT sin θ + c cosα cos θ, c sinα, vT cos θ − c cosα sin θ) , (40)

where α is an arbitrary angle. Setting ω = ω± + δ, where |δ| ≪ ω± and where

ω2

±
=

1

2
(ω2

H ± Ω2) , Ω2 =
(

(ω2

p − ω2

c )
2 + 4ω2

pω
2

c sin
2 θ

)1/2
(41)

gives the unperturbed frequencies and working as before, the unstable root with Im(δ) > 0

is found with

Im(δ) =

√
3∆1/3

24/3|ω2
± − ω2

c |1/3ω
1/3
± Ω2/3

×

×
{[

ω2

±

(

(ω2

±
− ω2

c )c
2/v2T − ω2

p

)

+ ω2

pω
2

c cos θ(cos θ − (c/vT ) cosα sin θ)
]

ω2

±
/ω2

p +

+ ω2

cω
2

pω
4

±
(c2/v2T ) sin

2 θ sin2 α
}1/3

. (42)

It turns out that the choice of α is not numerically relevant for realistic physical estimates.

Setting α = 0◦, using the non-relativistic assumption v2T/c
2 ≪ 1 and replacing the zero order

14



dispersion relation ω2
pω

2
c cos

2 θ = ω2
Hω

2
±
−ω4

±
whenever convenient allows to simplify Eq. (42)

as

Im
( δ

ω±

)

=
√
3∆1/3

(

ω2
±
|ω2

±
− ω2

c |
ω2
pΩ

2

)1/3 (
c

2vT

)4/3

. (43)

Equation (43) is our final general result. When k ⊥ ωc and ω2
±
= ω2

+ ≈ ω2
H , it reproduces

Eq. (30), while for ω2
±
= ω2

−
≈ 0 one has δ ≈ 0, justifying the neglect of the zero frequency

mode in Section IVa. On the other hand, when k ‖ ωc and ω2
±

≈ ω2
p, it reproduces Eq.

(35), while setting ω2
±

≈ ω2
c gives δ ≈ 0, which is in accordance with Section IVb where

ω2 ≈ ω2
c was observed to be associated with zero neutrino density fluctuations. Notice that

all neutrino effects shows up with the multiplicative factor ∆1/3 ∼ G
2/3
F .

For some numerical estimates and for comparison we set the same parameters of the

previous Sections, namely n0 = 1034 m−3, B = 5 × 107 T, vT = c/10, Eν0 = 10MeV with a

prescribed equilibrium neutrino number density nν0 = 1035 m−3 but keeping θ free, allowing

a detailed observation of the dependence of the growth rate on the angle. The results are

shown in Figs. 4 and 5 below, applying respectively for ω− and ω+. In particular, in Fig.

4 for θ = π/2 rad (perpendicular propagation) gives δ ≈ 0 corresponding to ω2 = ω2
−
= 0.

Similarly, In particular, in Fig. 5 for parallel propagation gives δ ≈ 0 corresponding to

ω2 = ω2
+ = ω2

c > ω2
p = ω2

−
for the chosen parameters. Finally, it can be verified that using

the more general expression (42) also allowing the angle α to vary does not appreciably

change the qualitative and quantitative findings.

0 Π

4
Π

2
3 Π
4

Π

0.4

0.8

1.2

1.6

Θ HradL

Im
∆
H´

10
10

s-
1
L

FIG. 4: Instability growth rate from Eq. (43) as a function of θ, using the mode ω−, for n0 =

1034m−3, nν0 = 1035m−3, B = 5× 107T, vT = c/10, Eν0 = 10MeV.
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FIG. 5: Instability growth rate from Eq. (43) as a function of θ, using the mode ω+, for n0 =

1034m−3, nν0 = 1035m−3, B = 5× 107T, vT = c/10, Eν0 = 10MeV.

VI. CONCLUSION

In this work the destabilization of Trivelpiece-Gould modes due to interaction with a

neutrino burst was established. The growth rate in dense magnetized plasma under intense

neutrino beams was found to be significant, as in the case of conditions near the core of mag-

netized supernovae. It is found that the ambient magnetic field can enhance the instability,

as in the case of perpendicular propagation where the essential result is the replacement of

the plasma frequency by the upper hybrid frequency as the natural inverse time scale of

the instability. The very general growth rate (43) can be used to the analysis of neutrino-

plasma interactions in a magnetized medium, in empirical tests of our understanding of the

coupling between charged leptons and neutrinos. In particular, a complete treatment of

the angular orientations of wave vector, neutrino beam and magnetic field is necessary for

the plasma diagnostics and accuracy of the proposed model. Finally, the electron cyclotron

Landau damping would be accessible by means of a kinetic treatment. As discussed in the

Introduction, a microscopic modeling would be also desirable in order to access the later

stages of the reactive instability.
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APPENDIX A: FULL EXPRESSIONS OF δuν AND δnν

Following the procedure outlined in Section III assuming ω2 6= ω2
c we get

δuν =

√
2GF δnec

2

Eν0(ω − k · uν0)(ω2 − ω2
c )

×
[

(ω2 − ω2

c −
ω2ω2

p

c2k2
)k+

ω2
p

c2k2
k · ωcωc +

+
ω2
p

c2k2

k · ωc

ω
uν0 × (k× ωc)−

iω2
p

c2k2
ωωc × k−

iω2
p

c2k2
[uν0 · (ωc × k)]k+

+
iω2

p

c2k2
(k · uν0)(ωc × k)− uν0

c2

(

(ω2 − ω2

c −
ω2ω2

p

c2k2
)(k · uν0) +

+
ω2
p

c2k2
(k · ωc)(uν0 · ωc)−

iω2
p

c2k2
ωuν0 · (ωc × k)

)]

. (A1)

Then from the neutrino continuity equation we get

δnν =

√
2GFnν0δnec

2

Eν0(ω − k · uν0)2(ω2 − ω2
c )

×
[

(ω2 − ω2

c )k
2 −

ω2ω2
p

c2
+

ω2
p

c2k2
(k · ωc)

2 +

+
ω2
p

c2k2

(k · ωc)

ω
k · [uν0 × (k× ωc)]−

iω2
p

c2
[uν0 · (ωc × k)] (A2)

−(k · uν0)

c2

(

(ω2 − ω2

c −
ω2ω2

p

c2k2
)(k · uν0) +

ω2
p

c2k2
(k · ωc)(uν0 · ωc)−

iω2
p

c2k2
ωuν0 · (ωc × k)

)]

.

Both expressions are needed to evaluate the neutrino contribution in the full dispersion

relation shown in Eq. (19).
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