
Multi-Hamiltonian structure of the epidemics model accounting for

vaccinations and a suitable test for the accuracy of its numerical solvers
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Abstract

We derive a generalized Hamiltonian formalism for a modified susceptible-infectious-recovered/removed

(SIR) epidemic model taking into account the population V of vaccinated persons. The resulting SIRV

model is shown to admit three possible functionally independent Hamiltonians and hence three associated

Poisson structures. The reduced case of vanishing vaccinated sector shows a complete correspondence with

the known Poisson structures of the SIR model. The SIRV model is shown to be expressible as an almost

Nambu system, except for a scale factor function breaking the divergenceless property. In the autonomous

case with time-independent stationary ratios k and b, the SIRV model is shown to be a super-integrable

system. For this case we test the accuracy of numerical schemes that are suited to solve the stiff set of SIRV

differential equations.
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I. INTRODUCTION

Recently, two of us1 extended the standard susceptible-infectious-recovered/removed (SIR) epi-

demic model by introducing a fourth compartment V of vaccinated persons and the vaccination

rate v(t) that regulates the relation between susceptible and vaccinated persons. The vaccina-

tion rate v(t) competes with the infection (a(t)) and recovery (µ(t)) rates in determining the
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time evolution of epidemics. Exact analytical inverse solutions t(Q) for all relevant quantities

Q ∈ [S, I, R, V ] of the resulting SIRV-model in terms of Lambert functions were derived for

the semi-time case with time-independent ratios k = µ(t)/a(t) and b = v(t)/a(t) between the

recovery and vaccination rates to the infection rate, respectively. These inverse solutions can

be approximated with high accuracy yielding the explicit time-dependence Q(t) by inverting the

Lambert functions. It was demonstrated that the values of the two ratios k and b as well as the

initial fraction of infected persons η ≤ 1 completely determine the reduced time evolution the

SIRV-quantities Q(τ), where the reduced time defined by τ =
∫ t

0
dt′a(t′) accounts for any given

time-dependence of the infection rate.

The existence of a generalized Hamiltonian formalism, also called Poisson structure, is an

important property of dynamical systems. For instance, it allows the nonlinear stability analysis of

stationary solutions in terms of the energy-Casimir method.2 Three-dimensional Poisson structures

have attracted some attention, being the lower dimensional case where a Hamiltonian description

is not symplectic.3–9 Historically the Poisson structure comes in an attempt to generalize canonical

Hamiltonian mechanics while preserving its essential geometric properties.

In the case of the SIRV model, it is a 4-dimensional (4D) dynamical system. Related to

the SIRV model, the Hamiltonian structure of compartmental epidemiological models has been

discussed.10 The study of 4D Poisson structures from a general point of view was done in Refs.11,12

and for Ermakov systems in Ref.13. Five,14 six15–17 or generic N -dimensional Poisson structures

have been also discussed.18–22

This work is organized as follows. In Section II the SIRV equations and the basic properties

of generalized Hamiltonian systems are reviewed. The three possible Hamiltonians for the SIRC

model are derived, together with the analysis of the reduced, SIR model limit without a vaccinated

population. Section III considers the stationary case where the system is not explicitly time-

dependent. Here we investigate the applicability of numerical solvers. Section IV shows some

properties of the third Hamiltonian of the SIRV system, which appears in an integral form not

expressible in terms of elementary functions. Section V discusses the multi-Hamiltonian structure

of the SIRV model and Section V D shows the lower-dimensional SIR reduction of these structures

dropping the vaccinated population. Section VI is reserved to the conclusions.
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II. MULTI-HAMILTONIAN STRUCTURE OF THE SIRV MODEL

We start with the SIRV model equations,1

dS

dt
= −aS I − v S ,

dI

dt
= aS I − µ I ,

dR

dt
= µ I ,

dV

dt
= v S , (1)

where a = a(t), µ = µ(t), and v = v(t). Although not strictly necessary, it is convenient to

eliminate one of the time-dependent parameters in Eq. (2) using the reduced time

τ =

∫ t

0

dt′ a(t′), (2)

so that

dS

dτ
= −S I − b S ,

dI

dτ
= S I − k I ,

dR

dτ
= k I ,

dV

dτ
= b S , (3)

where k = k(τ) = µ/a and b = b(τ) = v/a. We emphasize that in the following we allow the

ratios k(τ) and b(τ) to be time-dependent.

A. Generalized Hamiltonian formalism

In a generalized Hamiltonian formulation6,10 the dynamical system is written as

dxi

dτ
= {xi, H} = J ij∂jH , (4)

where H = H(xi, τ) is the Hamiltonian function and the Poisson bracket {, } is defined by

{A,B} = ∂iAJ
ij ∂jB , (5)

where A,B are generic functions and the structure functions J ij = −J ji are the components of

an antisymmetric 2-tensor. Summation convention is being employed, and ∂i = ∂/∂xi.

In order to ensure the Jacobi identity {A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0, the

equation

J ij∂iJ
kl + J ik∂iJ

lj + J il∂iJ
jk = 0 . (6)

must be satisfied.
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For a 4D dynamical system with xi = (x1, x2, x3, x4), Eq. (6) amounts to

J i1∂iJ
23 + J i2∂iJ

31 + J i3∂iJ
12 = 0 , (7)

J i1∂iJ
24 + J i2∂iJ

41 + J i4∂iJ
12 = 0 , (8)

J i1∂iJ
34 + J i3∂iJ

41 + J i4∂iJ
13 = 0 , (9)

J i2∂iJ
34 + J i3∂iJ

42 + J i4∂iJ
23 = 0. (10)

Moreover, the Hamiltonian must satisfy

dxi

dτ
∂iH = ∂iH J ij ∂jH = {H,H} = 0 . (11)

Therefore
dH

dτ
=
∂H

∂τ
, (12)

so that if H is not explicitly time-dependent it is a constant of motion (or first integral).

B. Three Hamiltonians for the SIRV model

For the SIRV model, it is useful to define (S, I, R, V ) = (x1, x2, x3, x4) = (x, y, z, w), so that

Eqs. (3) read

dx

dτ
= −x y − b x ,

dy

dτ
= x y − k y ,

dz

dτ
= k y ,

dw

dτ
= b x . (13)

According to Eq. (11) a Hamiltonian for the SIRV model then solves the partial differential equa-

tion

−(xy + bx)
∂H

∂x
+ (xy − ky)

∂H

∂y
+ ky

∂H

∂z
+ bx

∂H

∂w
= 0 . (14)

Using the method of characteristics, Eq. (14) is equivalent to the Pfaff system

− dx

xy + bx
=

dy

xy − ky
=
dz

ky
=
dw

bx
=
dH

0
. (15)

It is possible to solve Eq. (14) for three independent functions. One of them, which we call

H = H1, is a distinguished first integral of the SIRV equations, namely

H1 = H1(x, y, z, w) = x+ y + z + w . (16)
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As H1 does not explicitly depend on time τ , it is a constant of motion which reflects the well-

known sum constraint requirement23 if combined with the semi-time initial conditions1 x(0) =

1− η, y(0) = η and z(0) = w(0) = 0.

A second function which can play the role of Hamiltonian is

H2 = H2(x, y) = x− k lnx+ y + b ln y

= S + I − k(τ) lnS + b(τ) ln I (17)

as can be verified by a posteriori resubstitution. In the general case of time-dependent ratios k(τ)

and b(τ) the function H2 is not a constant of motion; only in the case of stationary values of these

ratios H2 is a first integral of motion.

C. Third Hamiltonian

The derivation of the third Hamiltonian function is more involved. We consider the third char-

acteristic equation (15) reading

dz = − k y dx

x y + b x
, (18)

and express y in terms of x along characteristics by inverting Eq. (17) written as

y + b ln y = H2 − x+ k lnx (19)

With y = e−Y Eq. (19) becomes

e−Y = b

(
Y +

H2 − x

b
+
k

b
lnx

)
(20)

with the solution

Y =
x−H2 − k lnx

b
+W [ξ(x)] = − ln(bξ) +W (ξ) (21)

in terms of the Lambert function defined by24,25

W (ξ)eW (ξ) = ξ , (22)

and

ξ = ξ(x) =
xk/b exp

(
H2−x

b

)
b

. (23)

Consequently we obtain for the solution of Eq. (19)

y = e−Y = bξe−W (ξ) = bW (ξ), (24)
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where we used Eq. (22) in the last step. Inserting Eq. (24) then provides for Eq. (18)

dz

dx
= − kW [ξ(x)]

x{1 +W [ξ(x)]}
= −kξ(x)

x

dW

dξ
, (25)

where we made use of Lambert’s differential equation

dW

dξ
=

W (ξ)

ξ[1 +W (ξ)]
. (26)

At this stage W can be either the principal Lambert function (W0 ≥ −1) or the second branch

(W−1 ≤ −1). The Lambert functions W (ξ) are real valued for ξ ≥ −1/e ≈ −0.37 which

presently is always satisfied since x ≥ 0, b > 0.

Integrating Eq. (25) yields

H̃ = z + k

∫ x dxξ

x

dW

dξ
= z + k

∫ x dxξ

x dξ
dx

dW

dx

= z + k

∫ x dx

xd ln ξ
dx

dW

dx
(27)

With

ln ξ =
k

b
lnx− ln b+

H2 − x

b
(28)

we obtain

x
d ln ξ

dx
=
k − x

b
(29)

along characteristics, that is, with H2 constant. With Eq. (29) inserted Eq. (27) yields

H̃ = z + kb

∫ x dx

k − x

dW

dx
(30)

as a possible Hamiltonian. While the form (30) is quite acceptable, it is more convenient to

consider

H3 = H1 −H2 − H̃ =

= w + k lnx− b ln y − bk

∫ x dx

k − x

dW

dx
(31)

to have a more clear reduction to the SIR case. We emphasize that in the treatment of Eq. (31) one

has W = W (ξ(x)) where ξ(x) is given by Eq. (23), parametrically dependent on H2, but after

integration one replaces H2 therein by its expression (17). Using Eqs. (26) and (29) we also have

H3 = w + k lnx− b ln y − k

∫ x dx

x

W (ξ)

1 +W (ξ)
(32)

= w + k lnx− b ln y − k

∫ x dq

q

Q(x, y, q)

1 +Q(x, y, q)
,

where

Q(x, y, q) = W (ξ) = W

[
y

b

( q
x

)k/b

exp

(
x+ y − q

b

)]
. (33)

7



D. Limiting SIR-case

The SIR model26 is a 3D dynamical system with (x1, x2, x3) = (x, y, z) = (S, I, R) obtained

from Eq. (13) in the absence of vaccination, i.e., upon setting w = 0, b = 0,

dx

dτ
= −x y ,

dy

dτ
= x y − k y ,

dz

dτ
= k y . (34)

Its generalized Hamiltonian formulation was analyzed some time ago,6–9 also possessing a multi-

Hamiltonian structure, in this case a bi-Hamiltonian structure, becoming super-integrable in the

autonomous case. We can select the possible Hamiltonians H1 = x+ y + z, which is the reduced

version (w = 0) of the universal constant of motion for the SIRV model, and H2 = x− k lnx+ y,

which is the reduced version of H2 given by Eq. (17) for b = 0. In this singular limit situation Eq.

(18) reads
dz

dx
+
k

x
= 0, (35)

yielding upon integration

H̃ = z + k lnx = H1 −H2 ̸= 0, (36)

when w = 0, b = 0 instead of Eq. (30) with the Lambert function, so that correctly

HSIR
3 = H1 −H2 − H̃ = 0 (37)

in the SIR limit. Any choice, different from Eq. (37), would give a SIR reduction with a third

non-zero Hamiltonian function being functionally dependent on the remaining H1,2.

III. STATIONARY RATIOS k AND b

In the case when k, b are time-independent, which was treated in detail in Ref.1, we have H2,3

from Eqs. (17) and (32) as additional constants of motion reading

H2 = 1− k ln(1− η) + b ln η,

H3 = k ln(1− η)− b ln η − k

∫ 1−η dq

q

Q(1− η, η, q)

1 +Q(1− η, η, q)

(38)

using again the initial conditions of the semi-time SIRV-model1 x(0) = 1 − η, y(0) = η and

z(0) = w(0) = 0.
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A. Time asymptotics

As argued in Ref.1, with b > 0 and assuming z residing in the finite interval [0, 1], one has

x∞ = x(τ = ∞) = 0. The existence of three constants of motion allows some precise predictions

for the time asymptotics as τ → ∞. For definiteness, suppose x∞ = 0. To keep H2 constant, then

it is necessary that y∞ = y(τ = ∞) = 0 too, but according to

y∞ = Axk/b∞ , A =
e1/b η

(1− η)k/b
. (39)

In this context, to keep a constant H1 one then needs z∞ + w∞ = 1, where z∞ = z(τ = ∞) and

w∞ = w(τ = ∞). Actually it is possible to manage H3 in this limit, to derive

z∞ = k

∫ q=1−η dq

q

Q(1− η, η, q)

1 +Q(1− η, η, q)

− k

∫ q=0 dq

q

Q∞(q)

1 +Q∞(q)
, (40)

where

Q∞(q) = W

[
y∞
b

(
q

x∞

)k/b

exp

(
x∞ + y∞ − q

b

)]

= W

[
η exp[(1− q)/b]qk/b

b(1− η)k/b

]
. (41)

Finally, one has w∞ = 1− z∞.

B. SIR-case

In the limiting SIR-case with b = 0 clearly

H2 = x+ y − k lnx = S + I − k lnS (42)

is the only constant of motion besides the sum constraint H1 = 1. As demonstrated before1,27 for

stationary ratio k the exact analytical solution of the SIR-model as a function of the reduced time

(2) is given by

x(τ) = S(τ) = 1− J(τ),

y(τ) = I(τ) = 1 + kϵ− x(τ) + k lnx(τ),

z(τ) = R(τ) = −k[ϵ+ lnx(τ)] (43)
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FIG. 1. Time evolution of the mismatch ∆H2(t) = |H2(t)−H2(0)| and ∆H3(t) = H3(t)−H3(0) for se-

lected numerical solvers, c.f., Tab. I. The predictor-corrector Adams solver implemented in Mathematica™

turned out to best keep both Hamiltonians at their initial values of order unity.

in terms of the cumulative fraction of new cases J(τ) obeying the integral

τ =

∫ J

η

dψ

(1− ψ)[ψ + kϵ+ k ln(1− ψ)]
, (44)

with η = 1 − e−ϵ and the initial condition I(0) = η. By direct insertion it is straightforward to

prove that the solution (43) indeed obeys the constant of motion (42).

C. Application: Accuracy of numerical solvers

In practice, the SIR and SIRV model equations with time-independent ratios k and b are com-

monly solved numerically, while some analytic approximants exist. However, the SIRV equations

constitute a stiff differential set of equations, for which certain numerical methods for solving the

equation are numerically unstable.

Having explored the Hamiltonian structure we can restrict ourselves to the autonomous case

to test the accuracy of numerical solvers. The ideal solver should keep all the Hamiltonians un-

changed during the course of time. To make sure our results are reproducible, and the underlying

methods well documented, we subjected a large number of methods offered by the commercial

software packages Mathematica™ and Matlab™ to our test.28,29 Because results are seen to not

depend qualitatively on the choice of initial conditions, we have performed benchmark tests at

the classical semi-time SIR initial conditions mentioned earlier: x(0) = 1 − η, y(0) = η, using

η = 0.1, while z(0) = w(0) = 0. As both ratios k, b are semipositive and usually residing on the
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interval [0, 1], we have used k = b = 0.5 for the tests to be reported here. With these choices, the

initial values for Hamiltonians areH1(0) = 1,H2(0) = 1−ln(3) ≈ −0.0986, andH3(0) ≈ 0.8516

according to Eq. (32) with Eq. (33).

For each of the methods collected in Tab. I we then measured the absolute deviations ∆Hj(t) =

|Hj(t) − Hj(0)| for j ∈ {1, 2, 3} as function of time, up to t = 100. Actually, we tested many

more settings (order 105), as several of the methods have additional parameters than can be varied

to tune the algorithm. In this sense, Tab. I contains representative, and to our opinion, the most

relevant results. It offers an assessment of both explicit and indirect methods, methods for stiff and

non-stiff ordinary differential equations, methods with constant and adaptive time steps, predictor-

and corrector steps, and results for different choices of the numerical precision employed.

Selected time series are shown in Fig. 1. As the deviations tend to be most pronounced at the

end of the time interval, we collect in Tab. I only the final values ∆Hj(100) for all the algorithms.

We do not include the values for ∆H1, because all methods succeed in keeping the sum constraint

H1(t) = 1 intact to very high precision.

We find the 10th order predictor-corrector Adams method works perfectly fine. Adam’s

method is a numerical method for solving first-order ordinary differential equations of the

SIRV form dx/dt = f(x, t), that combines the explicit Adams-Bashforth and implicit Adams-

Moulton steps. Let ∆t = tn+1 − tn be the step interval, and consider the Maclaurin series

of x about tn, xn+1 = xn + (dx/dt)n(t − tn) + (1/2)(d2x/dt2)n(t − tn)
2 + O(t − tn)

3 and

(dx/dt)n+1 = (dx/dt)n + (d2x/dt2)n(t− tn)
2 +O(t− tn)

3. Here, the derivatives of x are given

by the backwards differences.28 For first-order interpolation, the method proceeds by iterating

the expression xn+1 = xn + f(xn, tn)∆t. The method is extended to arbitrary order using the

finite difference integration formula from Beyer.30 On the other end, the explicit or implicit Euler

methods should not be used, such as xn+1 = xn + f(xn, tn)∆t or xn+1 = xn + f(xn+1, tn)∆t,

respectively. It is also worthwhile noticing that all methods available in Matlab™ do not perform

very well. Table I mentions three out of the seven Matlab methods that produce a numerical (as

opposed to not-a-number) result up to t = 100 for our benchmark case. The ones that work are all

designed for stiff (ode15s) or moderately stiff (ode23t, ode23tb) ordinary differential equations.
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log10∆H2 log10∆H3 precision Software name of method

-7.6304 -7.8309 20 Mathematica™ 12 Adams, MaxDifferenceOrder →10

-6.2650 -6.4622 20 Mathematica™ 12 BDF

-5.9661 -6.1608 20 Mathematica™ 12 Adams, MaxDifferenceOrder →2

-4.5892 -4.7877 10 Mathematica™ 12 ExplicitModifiedMidpoint

-3.9041 -4.1018 10 Mathematica™ 12 LinearlyImplicitMidpoint

-3.8239 -3.9838 10 Mathematica™ 12 Adams, MaxDifferenceOrder →10

-3.3633 -3.5612 10 Mathematica™ 12 ExplicitMidpoint

-2.9477 -3.1377 10 Mathematica™ 12 Adams, MaxDifferenceOrder →2

-2.9253 -2.9941 10 Mathematica™ 12 LinearlyImplicitModifiedMidpoint

-1.9612 -2.1605 10 Mathematica™ 12 ExplicitRungeKutta, DifferenceOrder →2

-0.5624 -0.7999 10 Mathematica™ 12 ImplicitRungeKutta, DifferenceOrder →2

-0.2633 -0.3985 10 Mathematica™ 12 BDF

-0.0351 -0.3670 20 Mathematica™ 12 ImplicitRungeKutta, DifferenceOrder →10

-0.1636 -0.3314 – Matlab™ R2019a ode15s

0.1166 -0.0815 – Matlab™ R2019a ode23t

0.1539 -0.1066 – Matlab™ R2019a ode23tb

0.1969 0.9437 10 Mathematica™ 12 ImplicitRungeKutta, DifferenceOrder →10

1.7008 1.6548 10 Mathematica™ 12 ExplicitRungeKutta, DifferenceOrder →10

1.7008 1.6548 10 Mathematica™ 12 IDA, ImplicitSolver →FixedPoint

1.7008 1.6548 20 Mathematica™ 12 ExplicitRungeKutta, DifferenceOrder →10

2.8889 0.6104 10 Mathematica™ 12 ExplicitEuler, variable step size

2.8976 -0.0007 10 Mathematica™ 12 LinearlyImplicitEuler

3.0376 3.0720 20 Mathematica™ 12 LinearlyImplicitMidpoint

3.0605 3.0968 20 Mathematica™ 12 ImplicitRungeKutta, DifferenceOrder →2

4.4480 4.5197 20 Mathematica™ 12 ExplicitModifiedMidpoint

4.7576 4.8286 20 Mathematica™ 12 ExplicitMidpoint

4.7628 4.8323 20 Mathematica™ 12 ExplicitRungeKutta, DifferenceOrder →2

9.4727 9.5026 20 Mathematica™ 12 LinearlyImplicitModifiedMidpoint

9.5362 1.1878 – Mathematica™12 ExplicitEuler, fixed step size 0.01

9.5355 7.0437 – Mathematica™ 12 ExplicitEuler, fixed step size 0.001

10.2583 10.2906 20 Mathematica™ 12 ExplicitEuler, variable step size

10.2583 10.2906 20 Mathematica™ 12 LinearlyImplicitEuler

TABLE I. For a large number of methods available in Mathematica™ 1228 and Matlab™ R2019a29 we here

provide representative results for the decadic logarithm of the mismatch ∆Hj = |Hj(t = 100)−Hj(t = 0)|

for j ∈ {2, 3} using SIRV parameters k = b = 0.5, η = 0.1. For all Mathematica™ routines we used the

specified working precision (WorkingPrecision equal to PrecisionGoal). Remaining methods available in

Matlab™ for non-stiff differential equations do not produce any result.
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IV. ANALYTIC PROPERTIES OF THE THIRD HAMILTONIAN (32)

It is not very commonplace to have a constant of motion in terms of a definite integral as is the

case of H3 in Eq. (32). Hence it is convenient to provide a recipe for partial derivatives of such

class of functions. We note

∂

∂x

∫
dx f(x, c) =

∂

∂x

∫ x

dx′ f(x′, c(x, y))

= f(x, c(x, y)) +
∂c

∂x

∫ x

dx
∂f

∂c
, (45)

∂

∂y

∫
dxf(x, c) =

∂

∂y

∫ x

dx′f(x′, c(x, y))

=
∂c

∂y

∫ x

dx
∂f

∂c
, (46)

where f(x, c) and c = c(x, y) are arbitrary functions of the indicated arguments. One then finds

∂H3

∂x
=

kb

x(y + b)
− k

b

(
1− k

x

)∫ x dxW (ξ)

x[1 +W (ξ)]3
, (47)

∂H3

∂y
= − b

y
− k

b

(
1 +

b

y

)∫ x dxW (ξ)

x[1 +W (ξ)]3
, (48)

which together with ∂H3/∂z = 0, ∂H3/∂w = 1 shows that H = H3 indeed solves Eq. (14). For

the derivation of Eqs. (47) and (48), one starts from H3 in Eq. (32) applying the identities in Eq.

(45) with

f(x, c) =
1

x

W (ξ)

1 +W (ξ)
, c = H2(x, y) (49)

with ξ = ξ(x) from Eq. (23), parametrically dependent on H2. A final step uses W (ξ) = y/b

according to Eq. (24).

V. POISSON STRUCTURES

The existence of three possible Hamiltonians allows us to write

dxi

dτ
= Aεijkl ∂jH1 ∂kH2 ∂lH3 , (50)

where εijkl is the 4D Levi-Civita symbol, which equals 1 for even permutations of {1, 2, 3, 4}, −1

for odd permutations and zero otherwise, and where A = A(x, y, z, w, t) is a scale factor to be

determined. The form (50) shows that Eq. (11) is immediately satisfied, due to the anti-symmetry

of εijkl. In the case of the SIRV model, a direct calculation yields

A = x y . (51)
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It can be observed that a dynamical system in the form (50) is almost a Nambu system,31 which

in the 4D case is given by
dxi

dτ
=
∂{xi, H1, H2, H3}
∂{x, y, z, w}

, (52)

where ∂{xi, H1, H2, H3}/∂{x, y, z, w} denotes the four-dimensional Jacobian matrix. Nambu

mechanics is known as a possible generalization of Hamiltonian mechanics preserving the diver-

genceless property, see32 for a recent review. The SIRV model is not exactly a Nambu system

since it is not divergenceless, which reflects in the scale factor A ̸= 1 in Eq. (51). Nevertheless

one has
∂

∂xi

(
1

A

dxi

dτ

)
= 0 . (53)

In this context the scale functionA is also termed inverse Jacobi multiplier.5 Alternatively, the case

with a scale factor A ̸= 1 is also known as non-canonical Nambu system, which has applications

in the motion of three point vortices in the plane.33 With a dynamical rescaling of time τ → τ ′

where dτ ′ = Adτ , then the SIRV model can be cast in the form (52) (with τ replaced by τ ′)

which becomes divergenceless. This could – formally at least – allow building a local canonical

symplectic structure thanks to Darboux’s theorem.5

In Eq. (50) there is no special role of any of the functions H1,2,3, all of them with the status of

a Hamiltonian, in spite of the pivotal character of H1 which is always a first integral and which is

known to be conserved from the very beginning. Therefore one has a multi-Hamiltonian structure

with an associated generalized Poisson bracket, as will be readily proven. In this regard, within

a given Poisson structure, it is relevant to know its Casimir functions. A Casimir function C by

definition is a function in involution with any other function on phase space. Therefore it satisfies

J ij∂jC = 0 . (54)

We are now in a position to enumerate the Poisson structures of the SIRV model, as follows.

A. Poisson structure I

From comparison between Eqs. (4) and (50) one can chose

H = H1 , J ij = Aεijkl ∂kH2 ∂lH3 , A = xy . (55)

It can be shown that such antisymmetric tensor always satisfies the Jacobi identities (7)-(10), for

arbitrary differentiable functions A and H2,3. Therefore one has an admissible Poisson structure

14



with H1 playing the role of Hamiltonian, while H2,3 are readily seen to be Casimir functions,

immediately satisfying Eq. (54). More explicitly, one has

J12 = 0 , J23 = (x− k)y , J31 = x(y + b) (56)

J14 = 0 , J24 = 0 , J34 = −bx ,

with the remaining components given by antisymmetry.

B. Poisson structure II

In the same spirit, one has the Poisson structure

H = H2 , J ij = xy εijkl ∂kH3 ∂lH1 , (57)

which also reproduces the equations of motion and satisfies the Jacobi identities. In this case H1,3

are the Casimir functions. More explicitly, one has

J12 = −xy ,

J23 = −xy + bky

y + b
− k

b
(x− k)y

∫
dx

x

W (ξ)

[1 +W (ξ)]3
,

J31 = −xy − bx− k

b
x(y + b)

∫
dx

x

W (ξ)

[1 +W (ξ)]3
,

J14 = −bx− k

b
x(y + b)

∫
dx

x

W (ξ)

[1 +W (ξ)]3
, (58)

J24 = − bky

y + b
+
k

b
(x− k)y

∫
dx

x

W (ξ)

[1 +W (ξ)]3
,

J34 = bx+
bky

y + b
+
k

b
(bx+ ky)

∫
dx

x

W (ξ)

[1 +W (ξ)]3
,

which can be checked to satisfy the Jacobi identities.

C. Poisson structure III

Finally, one can chose H = H3 as the Hamiltonian, in which case

J ij = xy εijkl ∂kH1 ∂lH2 , (59)

with H1,2 playing the role of Casimirs. More explicitly,

J12 = 0 , J23 = −(x− k)y , (60)

J31 = −x(y + b) , J14 = −x(y + b) ,

J24 = (x− k)y , J34 = bx+ ky ,
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with the remaining structure functions following from the antisymmetry.

In passing we note that the autonomous situation has a formal solution thanks to the complete

integrability, or super-integrability in this case. A n−dimensional dynamical system possessing

(n−1)−first integrals is known as a super-integrable system.34 The SIRV model is therefore super-

integrable in the autonomous case. An exact solution can then be found as follows. One can at

least formally select one of the dynamical variables (say, x) to express the remaining in terms of

it. Namely, from Eqs. (23) and (24) one has y = y(x). In the continuation one has w = w(x) from

Eq. (31) or (32) and finally z = z(x) from Eq. (16). The trajectories so obtained do not take into

account the temporal dynamics, as done in earlier work.1

D. Poisson structures for the limiting SIR-case

For the limiting SIR model we selected already the possible Hamiltonians H1 = x+ y+ z, and

H2 = x− k lnx+ y. It is almost immediate to write

dx

dτ
= xy∇H1 ×∇H2 , x = (x, y, z) , (61)

or
dxi

dτ
= xyεijk ∂jH1 ∂kH2 , (62)

where εijk is the 3D Levi-Civita symbol. Therefore one has the two Poisson structures I and II,

related to H1 and H2. As remarked before, the SIRV Poisson structure III collapses in the SIR

limit, due to H3 = 0 in this case.

(i) If the Hamiltonian is H = H1, the Jacobian is given by

J ij = xyεijk ∂kH2 , (63)

with Casimir H2. Explicitly,

J12 = 0 , J23 = (x− k)y , J31 = xy . (64)

This corresponds to the Poisson structure I of the SIRV model setting b = 0, together with J i4 = 0.

(ii) If the Hamiltonian is H = H2, one has

J ij = −xy εijk ∂kH1 , (65)

with Casimir H1. Explicitly,

J12 = J23 = J31 = −xy . (66)
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This corresponds to the Poisson structure II of the SIRV model setting b = 0, together with

J i4 = 0, and omitting the integrals with the Lambert function. These integrals do not play any role

in the SIR limit, since the characteristic equation (18) with b = 0 does not involve the Lambert

function, as remarked.

VI. CONCLUSION

The partial differential equation (14) for the Hamiltonian function of the SIRV model is exactly

solvable, yielding three possible functionally independent Hamiltonians. While two of them (H1

and H2) are expressible in terms of elementary function, the third one (H3) involves an integral

containing the Lambert function, a somewhat unusual circumstance. Nevertheless, the result al-

lows to express the SIRV model as a non-canonical Nambu system, directly associated to three

Poisson structures. The corresponding structure functions J ij defining the generalized Poisson

bracket have been determined, and verified to be in accordance with the Jacobi identity. The Pois-

son structure class II also depends on integrals of the Lambert function, in spite of the Hamiltonian

H2 to be a simpler function of the dynamical variables. The corresponding Casimir functions com-

muting with all phase space functions have been determined for the three generalized Hamiltonian

descriptions. The derivation of the third Hamiltonian H3 shows the SIRV model to be completely

integrable in the autonomous, or stationary case. The reduction to the lower-dimensional case

where the vaccinated population is absent shows a complete correspondence between the extended

Poisson structures I and II of SIRV model with the previously known Poisson structures of the SIR

model, while the Poisson structure class III of SIRV collapses in this case, as it should. In a

sense the Poisson structure I of the SIRV model is privileged since it is the only where both the

Hamiltonian and the structure functions do not have integrals unevaluated in terms of elementary

functions. However, one of its Casimir functions (namely H3) involves an integral containing the

Lambert function. As a side-result we find that Adam’s predictor-corrector scheme appears most

suitable to integrate the stiff system of ordinary differential SIRV equations.
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