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We consider the relativistic ion-acoustic mode in a plasma composed by cold ions and
an ultra-degenerate electron gas, described the relativistic Vlasov-Poisson system. A
critical examination of popular fluid models for relativistic ion-acoustic waves is provided,
comparing kinetic and hydrodynamic results. The kinetic linear dispersion relation
is shown to be reproduced by the rigorous relativistic hydrodynamic equations with
Chandrasekhar’s equation of state.

1. Introduction

Recently, there has been a lot of interest on relativistic waves in degenerate plasmas,
described by hydrodynamic equations (Ali & Ur-Rahman 2014; Haas & Kourakis 2010;
S. Hussain & ur Rehman 2014; M. Irfan & Mizra 2016; A. Esfandyari-Kalejahi & Saberian
2011; Masood & Eliasson 2011; M. McKerr & Kourakis 2014, 2016; A. Rahman & Qamar
2015). The examination of the literature shows sometimes the use of questionable options,
namely: choosing to work with the proper number density (which is the number density
in a local reference frame where the fluid is at rest) in the equation of state, while using
the laboratory number density in the continuity equation, with the same symbol for
both objects; the use of relativistic equations of state inside otherwise non-relativistic
fluid equations; the use of non-relativistic equations of state inside otherwise relativistic
fluid equations; covariant or non-covariant form of the pressure term, including or not the
respective time-derivative; taking into account or not, the relativistic mass increase due
to thermal effects. Fortunately, similar criticisms have been already made (Berezhiani
& Mahajan 1995; Lee & Choi 2007; M. Lontano & Koga 2001; E. Saberian & Akbari-
Moghanjoughi 2011). However, it is the time to stress once again the need of a more firm
ground on the choice of relativistic fluid equations. A good way to proceed, is by com-
parison between fluid models and relativistic kinetic theory, which is by definition more
general than the macroscopic approaches. The right choice of hydrodynamic equations is
important, for instance, for the development of exact nonlinear waves and solitons (Infeld
& Rowlands 2012), hardly accessible by means of kinetic theory.

In this context, here we will derive the linear dispersion relation for ion-acoustic
waves in a deep degenerate plasma composed by electrons and cold, massive ions, using
the relativistic Vlasov-Poisson system. In a first approximation, quantum recoil will be
neglected, not only because of simplicity, but also because quantum diffraction effects
contribute with a ∼ k4 term in the wave dispersion (Haas 2011), where k is the wave-
number. As far as the ion-acoustic velocity cs is concerned, we can keep ourselves with
the lowest-order term, since ω ≈ csk, where ω is the wave frequency.

The calculation of the plasma (longitudinal and transverse) response in fully degenerate
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relativistic plasma has been made by Jancovici (Jancovici 1962), using the dielectric
formalism of a quasi-boson Hamiltonian approximation. Jancovici’s result generalizes
the non-relativistic expression found by Lindhard (Lindhard 1954). In our case, for the
ion-acoustic wave, the static (ω ≈ 0) limit of the electronic response will be sufficient. The
static response is also relevant for Kohn’s anomaly and Friedel oscillations (Kohn 1959)
and, in the case of the transverse response, for the magnetic susceptibility. Moreover,
it has a deep influence on a possible attractive quantum force between ions in plasmas
(Shukla & Eliasson 2012), not yet empirically tested, and subjected to some theoretical
controversy (P. K. Shukla & Akbari-Moghanjoughi 2013; Tyshetskiy & Vladimirov 2013).
An excellent historical overview of the literature on dispersion relations for relativistic
degenerate plasma is given in (Melrose 2008), chapter IX; see also (V. Kowalenko & Hines
1985). Our aim is to verify the agreement between relativistic kinetic and fluid theories
for ion-acoustic waves in degenerate plasmas, as put forward in recent works (Haas &
Kourakis 2010; M. McKerr & Kourakis 2014, 2016).

This work is organized as follows. In Section II, we review the derivation of ion-
acoustic waves in terms of the relativistic Vlasov-Poisson system. Section III makes the
comparison with the results from the (rigorous) hydrodynamic model. Section IV shows
our conclusions.

2. Ion-acoustic waves in a relativistic degenerate plasma: kinetic
theory

The relativistic Vlasov-Poisson system for an electron-ion plasma is given by

∂fe
∂t

+
p

γeme
· ∇fe − eE · ∂fe

∂p
= 0 , (2.1)

∂fi
∂t

+
p

γimi
· ∇fi + eE · ∂fi

∂p
= 0 , (2.2)

∇ ·E =
e

ε0

∫
d3p (fi − fe) , (2.3)

where fe,i = fe,i(r,p, t) denote the electron (e) and ion (i) phase space probability

distribution functions, me,i are the electron and ion masses, γe,i =
√
1 + p2/(m2

e,ic
2)

are the relativistic gamma factors, E is the electric field, e is the elementary charge (for
simplicity, ions are supposed to be singly ionized) and ε0 is the vacuum permittivity.
The integrals are performed in the whole momentum space. By assumption, we also have
mi ≫ me.

The equilibrium state is E = 0, with a cold ionic distribution f0
i = n0δ(p) and an

electronic distribution fe = f0
e (p), normalized so that

∫
d3pf0

e (p) = n0. Assuming, as
usual, plane wave perturbations ∼ exp[i(k · r−ωt)], we get the linear dispersion relation

ϵ(k, ω) = 1−
ω2
pi

ω2
−

ω2
pe

n0

∫
d3p

γ3
e

f0
e (p)

[ω − k · p/(γeme)]2

(
1 +

p2

m2
ec

2
sin2 θ

)
= 0 , (2.4)

where k = kẑ,p = p (cosϕ sin θ, sinϕ sin θ, cos θ) and ωp e,i = [n0e
2/(me,iε0)]

1/2. Natu-
rally, for a cold ion distribution the non-relativistic approximations for ions would have
been sufficient. Nevertheless, the ionic force equation (2.2) was keep relativistic with an
eye on alternative applications.
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Assume a deep degenerate electronic distribution function given by

f0
e =

{
3n0/(4πp

3
F ) , p < pF ,

0 , p > pF ,
(2.5)

where pF = ~ (3π2n0)
1/3 is the Fermi momentum and ~ = h/(2π) is the reduced Planck

constant.
Evaluating the electrons integral, we find the real part of the longitudinal dielectric

function given by

ϵ(k, ω) = 1−
ω2
pi

ω2
+

3ω2
pe

√
1 + ξ20

c2k2ξ20

(
1− ω

2 kvF
ln

∣∣∣∣ω + kvF
ω − kvF

∣∣∣∣) = 0 , (2.6)

where vF = pF /(γFme) is the electrons Fermi velocity in terms of γF =
√
1 + ξ20 ,

ξ0 = pF /(mec) is the relativistic parameter. We are ignoring the imaginary contribution
(collisionless damping) for the moment. The dispersion relation (2.6) was first obtained by
Jancovici (Jancovici 1962), using a quasi-boson Hamiltonian approximation, and without
accounting for the ion dynamics or, equivalently, taking mi/me → ∞, ωpi → 0. The
longitudinal plasma response including the ions motion was later obtained in (Delsante
& Frankel 1980).

For ion-acoustic waves in degenerate plasma by definition we have

vFi ≪ ω/k ≪ vF , (2.7)

where vFi is the ions Fermi velocity. For simplicity, the small correction arising from
the ions Fermi temperature (or ions thermodynamic temperature in the case of non-
degenerate ions) will be essentially ignored in what follows. Notice the similarity with ion-
acoustic waves in classical plasma, with the thermal electron and ion velocities replacing
respectively the electron and ion Fermi velocities.

In view of Eq. (2.7), the static electronic response (ω ≈ 0) is sufficient for ion-acoustic
waves, as can be seen from the behavior of the function F [ω/(kvF )] present in the last
term of the dielectric constant (2.6),

F

(
ω

k vF

)
=

ω

2 k vF
ln

∣∣∣∣∣1 +
ω

k vF

1− ω
k vF

∣∣∣∣∣ , (2.8)

shown in Fig. 1, ignoring the small imaginary part of the frequency (as later discussed
below). As apparent, the smallness of the function F [ω/(kvF )] for slow modes so that
ω/k ≪ vF shows that the dynamic electronic response is not necessary.

Therefore, we get

ϵ(k, ω) ≈ 1−
ω2
pi

ω2
+

3ω2
pe

√
1 + ξ20

c2k2ξ20
= 0 , (2.9)

so that

ω2 =
c2sk

2

1 + c2sk
2/ω2

pi

, (2.10)

where

c2s =
p2F

3memi

√
1 + ξ20

(2.11)

provides the definition of the ion-acoustic velocity cs. The dispersion relation (2.10)
encompasses both non-relativistic and ultra-relativistic regimes. As can be checked, one
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Figure 1. Function F [ω/(k vF )] defined in Eq. (2.8), responsible for the dynamical part of the
electron response in the longitudinal dielectric function (2.6).

always has (cs/vF )
2 = meγF /(3mi) ≪ 1 as long as n0 ≪ 1047 m−3, in accordance with

Eq. (2.7).
Alternatively, one might re-express Eq. (2.11) as

cs
c

=

(
me ξ

2
0

3mi

√
1 + ξ20

)1/2

, (2.12)

where the right-hand side is now a function of the density n0 contained in the relativistic
parameter ξ0. The result is shown in Fig. 2, for hydrogen plasma. For a very dense white
dwarf with n0 = 1040 m−3, one will have ξ0 = 25.73. Even in this extreme case, the
relativistic-degenerate ion-acoustic velocity remains much smaller than the light velocity.

We could examine the assumption of deep degeneracy, which requires TF ≪ T , where
TF = (γF − 1)me c

2/κB is the Fermi temperature (κB is the Boltzmann constant) and
T is the electrons temperature. For a central white dwarf temperature T = 107 K, one
has TF > T provided n0 > 1.15 × 1032 m−3, or equivalently ξ0 > 0.06. On the other
hand, replacing the electron mass by the proton mass whenever necessary and supposing
the same ionic temperature T = 107 K, one would have degenerate ions for much larger
densities, or n0 > 9.00× 1036 m−3.

The imaginary part of the longitudinal dielectric function was analyzed in (Delsante
& Frankel 1980). Essentially, the result for ultra-degenerate electrons is that collisionless
damping is very small, provided pF /(mic) ≪ 1, a condition fairly well satisfied except
for huge densities of the order n0 > 1045 m−3, or ξ0 > 103. A general treatment about
the imaginary part of the longitudinal dielectric response in non-degenerate relativistic
plasma can be found in Eliasson & Shukla (2010).

When reaching enormous densities, one would be faced with the issue of collisionless
pair creation, whenever ~Ωp > 2me c

2. Here Ωp = [n0e
2/(γFmeε0)]

1/2 is the relativistic
plasmon frequency taking into account the relativistic mass increase due to the Fermi
momentum. One find that pair creation is avoided provided n0 < 2.7 × 1040 m−3, or
ξ0 < 35.83. In the same trend, positrons can not be excited from the Fermi sea since
the plasmon energy ~Ωp is far less than the Fermi energy, for dense plasmas. This can



Relativistic degenerate ion-acoustic waves 5

0 5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ξ0

cs

c

Figure 2. Normalized relativistic-degenerate ion-acoustic velocity from Eq. (2.12), in terms of
the relativistic parameter ξ0 = pF /(me c), for hydrogen plasma parameters.

30 32 34 36 38 40
0.0

0.2

0.4

0.6

0.8

1.0

log10n0

�Ωp

ΚB TF

Figure 3. Ratio between the plasmon energy ~Ωp and the Fermi energy κBTF as a function of
density using S.I. units, for hydrogen plasma parameters.

be seen in Fig. 3, also showing that the plasma becomes more ideal (colisionless) as the
density increases. In the ultra-relativistic limit of ultra-high densities, one approaches
the asymptotic value ~Ωp/(κBTF ) → 2

√
α/(3π) = 0.06, where α = e2/(4πε0~c) is the

fine-structure constant.
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3. Ion-acoustic waves in a relativistic degenerate plasma: fluid theory

Consider the fluid model for relativistic degenerate electrostatic plasma put forward
in (Haas & Kourakis 2010; M. McKerr & Kourakis 2014, 2016),

∂

∂t
(γ̄αnα) +∇ · (γ̄αnαuα) = 0 , α = e, i (3.1)

Hme

( ∂

∂t
+ ue · ∇

)
(γ̄eue) = − γ̄e

ne

(
∇+

ue

c2
∂

∂t

)
P − eE , (3.2)

mi

( ∂

∂t
+ ui · ∇

)
(γ̄iui) = eE , (3.3)

∇ ·E =
e

ε0
(γ̄ini− γ̄ene) , (3.4)

where ne,i and ue,i are the electron (ion) proper number densities and velocity fields,

γ̄e,i = 1/
√
1− u2

α/c
2 the corresponding relativistic factors, H an enthalpy-like quantity

related to relativistic mass increase due to the incoherent bulk motion of the electrons,
and P the electrons pressure, to be specified by the appropriate equation of state. The
remaining symbols have the same meaning as before. In the same way as in the kinetic
treatment, ions are assumed to be cold. Actually in the present case the ion equations
could have been completely classical, but have been written in relativistic form for the
sake of generality.

Notice that the fluid equations involve the proper and not the laboratory densities
Ne,i = γe,ine,i. Obviously, one could formulate the basic equations in terms of Ne,i, but
in this case for the sake of coherence one would be obliged to insert gamma factors inside
the equations of state - a cumbersome circumstance in our view. In addition, we note
the covariant form of the pressure term in the electron force equation (3.2), containing a
time-derivative. For linear waves with zero equilibrium velocity, such a term has no role,
but the same can not be assured for relativistic speeds and/or fast temporal variations
of the fluid pressure.

In the present ultra-degenerate case, it is indicated to consider the Chandrasekhar
equation of state (Chandrasekhar 1935; Oppenheimer & Volkoff 1939). Hence we set

P

n0mec2
=

1

8 ξ30

[
ξ(2ξ2 − 3)

√
1 + ξ2 + 3 senh−1ξ

]
, (3.5)

where ξ0 = pF /(mec) is the relativistic parameter as before and ξ = ξ0(ne/n0)
1/3.

Moreover, one have the enthalpy-like quantity H =
√
1 + ξ2, which can be related to

the mass-energy density. For a recent detailed derivation, see (Haas & Kourakis 2010).
The equation of state is fully consistent with the isotropic three-dimensional equilibrium
(2.5). It can also be understood as the isothermal equation of state of the Fermi gas,
in the limit of zero temperature. Notice that it is not an adiabatic equation of state,
which would be inappropriate for ion-acoustic waves. The same happens for classical,
non-degenerate, non-relativistic plasmas: isothermal equation of state is the right choice
for ion-acoustic waves; adiabatic equation of state holds for Langmuir waves (Krall &
Trivelpiece 1973). The choice of equation of state for relativistic plasma can be a subtle
problem, see (Pegoraro & Porcelli 1984) for the analysis of Langmuir and ion-acoustic
waves in the non-degenerate case.

For the propagation of ion-acoustic waves, the electrons inertia can be entirely ne-
glected, since in the left-hand side of Eq. (3.2) one has Hme << mi as far as ne ≪
3.62× 1045 m−3. Therefore, for inertialess electrons, linearizing around ne,i = n0,ue,i =
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0,E = 0 and proceeding as before, the result is

ϵ(k, ω) = 1−
ω2
pi

ω2
+

meω
2
pe

k2(dP/dne)0
= 0 . (3.6)

Moreover,

dP

dne
=

mec
2ξ2

3
√
1 + ξ2

⇒
(
dP

dne

)
0

=
p2F

3me

√
1 + ξ20

, (3.7)

which can be used to show the complete equivalence between (3.6) and the kinetic
longitudinal dielectric function (2.9). Therefore, the proposed fluid model satisfies the
necessary condition, of agreement with the microscopic (kinetic) theory.

4. Conclusion

The comparison between the kinetic and rigorous fluid models of ion-acoustic waves in
a relativistic degenerate plasma has been made. As far as the real part of the longitudinal
dielectric function is concerned, the agreement has been found to be exact. The spirit of
this approach should be promoted, so as to provide a more clear justification of relativistic
plasma hydrodynamics models. Applications can be easily pursued e.g. in the case of
laser-plasma interactions in the high-energy density regimes. Extension to problems
involving significant quantum diffraction is ongoing and will be reported elsewhere.
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