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Using a two-species quantum hydrodynamic model, we derive the quantum counterpart of mag-
netosonic waves, in a plasma with arbitrary degree of degeneracy and taking into account quantum
diffraction effects due to the matter-wave character of the charge carriers. The weakly nonlinear
aspects of the associated quantum magnetosonic wave are accessed by means of perturbation the-
ory, with the derivation of a nonlinear evolution equation admitting solitons, namely, the Korteweg
- de Vries equation. The degeneracy and quantum diffraction effects on soliton propagation are
determined. A qualitative change on weakly nonlinear magnetosonic waves appear when quantum
diffraction matches certain conditions, producing shock solutions instead of solitons, within the
approximation level. We also include explicit numeric estimates and a discussion on the coupling
(non-ideality) parameter for quantum plasmas with intermediate degeneracy degree.
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I. INTRODUCTION

The study of nonlinear magnetohydrodynamic (MHD)
waves in plasmas has gained interest due to it’s wide
range of application from astrophysical to laboratory
plasmas. The theory of MHD waves in infinite conduct-
ing medium was first developed by Alfvén [1] with its
application to sunspots, coronal heating, particle accel-
eration and generation of cosmic radiation. The Alfvén
and magnetosonic waves are the fundamental modes of
MHD in plasmas. The Alfvén wave is a transverse wave,
which propagates parallel to the magnetic field without
fluid density perturbation. The magnetosonic wave is
partially longitudinal due to the plasma compression and
transverse due to the magnetic field lines compression [2].
The magnetosonic wave is also named as fast MHD wave
as its speed is greater than the Alfvén wave speed.

Recently, there has been great interest of studying col-
lective modes in quantum plasmas due to its applications
in semiconductors, nanoscale electromechanical struc-
tures, laser plasma interactions and dense astrophysical
plasmas, see [3–5] and references therein. The quantum
or degeneracy effects become important in plasmas when
the de Broglie wavelength associated with electrons/ions
becomes of the order of the average inter-particle dis-
tance. The quantum effects arise by both Pauli exclusion
principle (for fermions like electrons and protons) and
Heisenberg uncertainty principle due to wave-like nature
of the particles. The collective motion of quantum par-
ticles in magnetic fields can be studied using quantum
magnetohydrodynamic (QMHD) theory. The linear and
nonlinear MHD waves in fully degenerate plasmas have
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been investigated already by a number of authors with its
application to interior of massive planets, white dwarfs
and pulsars. Haas [6], firstly introduced QMHD models,
where non-classical corrections were included through a
quantum diffraction parameter. Further, Marklund and
Brodin [7] extended the QMHD model by including spin
1/2 effects of degenerate electrons to study low frequency
waves in magnetized quantum plasmas. Magnetosonic
solitons were studied in a quantum magnetoplasma in-
cluding the quantum Bohm potential and electron spin-
1/2 effects using the Sagdeev potential approach [8]. The
authors found that the rarefactive magnetosonic solitons
propagating with sub-Alfvénic speed are formed due to
balance between nonlinearities and quantum tunneling
effects. Also a generalized set of nonlinear electromag-
netic quantum hydrodynamic equations has been pre-
sented including certain spin and relativistic effects in
Ref. [9]. Nonlinear magnetosonic waves in dense dissi-
pative magnetized plasmas have also been studied using
reductive perturbation techniques, leading to the deriva-
tion of a Zabolotskaya-Khoklov equation [10].

The equation of state for a degenerate electrons gas
is described by a Fermi-Dirac probability distribution
characterized by two independent parameters i.e., the
chemical potential and the thermodynamic temperature
[11–13]. The main parameter in a near to equilibrium
Maxwellian electrons gas is the thermodynamic temper-
ature. On the other hand, in a fully degenerate electron
gas described by a Fermi-Dirac distribution, the energy
spread is uniquely determined by the chemical potential,
which is the same as the Fermi energy in this case. In
this context, it is interesting to investigate the linear and
nonlinear magnetosonic wave propagation in full gener-
ality, with an equation of state for arbitrarily degener-
ate electrons in which these two parameters i.e., chem-
ical potential and thermal temperature, can be equally
relevant, and where quantum diffraction effects of elec-
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trons are also taken into account. Our model is more
relevant to systems which are neither strongly degener-
ate nor close to classical statistics. In other words, it is
more pertinent to systems where the Fermi and thermal
temperatures are of the same order of magnitude. This
situation happens in inertial confinement plasmas in lab-
oratories with particle densities in the range 1030 to 1032

m−3 and thermodynamic temperatures above 107 K [14].
Moreover, it has applications such as in laboratory sim-
ulations of astrophysical dense plasmas which are better
represented in the intermediate Maxwellian and degener-
ate regimes [15] and in ultra-small semiconductor devices
operating in a mixed dilute-dense plasma regime [16].
In a certain sense, systems with an intermediate statis-
tics have a parallel in certain space plasmas and dusty
plasma crystals, where the underlying quasi-equilibrium
distribution function can be a Maxwellian or a long tail,
kappa distribution according to the circumstances [17].

Using classical kinetic theory, and linearizing the
Vlasov-Poisson system around a Fermi-Dirac equilib-
rium, Maafa [18] was the first to study ion-acoustic and
Langmuir waves in plasmas with arbitrary degeneracy of
electrons. Recently, Haas and Mahmood [13, 19] inves-
tigated the linear and nonlinear ion-acoustic waves un-
magnetized (1D soliton) and magnetized (2D soliton) in
dense plasma with arbitrary degeneracy of electrons. The
quantum coupling parameter is also defined for arbitrary
degenerate plasma to ideal gas regime and limitations for
quantum diffraction parameter in QHD (quantum hydro-
dynamic) and QMHD models. Using quantum kinetic
theory, the low frequency longitudinal response was ob-
tained in electron-ion plasmas including quantum recoil
for dilute [20] and then for the arbitrary degenerate case
[21] in a Fermi-Dirac equilibrium. Eliasson and Shukla
[22] studied the nonlinear quantum electron fluid evo-
lution equations for the Wigner function in terms of a
local Fermi-Dirac equilibrium with an arbitrary thermo-
dynamic temperature. The Langmuir waves were then
investigated in the high (Maxwellian) and low (fully de-
generate) temperature limits. Dubinov et al. [23] studied
the nonlinear ion-acoustic waves with arbitrary degener-
acy of electrons and ion by considering them as warm
Fermi gases.

In the present manuscript, we analyze for the first time
the propagation of linear and weakly nonlinear magne-
tosonic waves in a plasma with arbitrary degeneracy of
electrons and with inclusion of Bohm diffraction effects.
For this purpose a two-species QHD model is employed.
The set of fluid equations and its linear wave analysis is
presented in Section II. The normalized set of dynamic
equations in described in Section III and the derivation
of the Korteweg - de Vries (KdV) equation for magne-
tosonic waves with arbitrary degeneracy of electrons is
presented in Section IV. Explicit numeric estimates are
presented in Section V. The conclusions are shown in Sec-
tion VI. Finally, Appendix A is reserved to the specific
form of certain functions obtained in the weakly nonlin-
ear perturbation theory.

II. SET OF DYNAMIC EQUATIONS AND
LINEAR WAVE ANALYSIS

We consider an electron-ion magnetized quantum
plasma which contains classical (due to their large iner-
tia) and cold ions and inertial degenerate electrons with
inclusion of the Bohm potential effect due to their wave
nature, together with Fermi pressure. To have more gen-
erality, we do not suppose length scales much longer than
the electronic skin depth, so that a two fluid model is
more appropriate than QMHD. To study the low fre-
quency magnetosonic waves, our basic equations are writ-
ten as follows.
The continuity and momentum equations for the non-

degenerate ions are written as

∂ni

∂t
+∇ · (nivi) = 0, (1)

∂vi

∂t
+ vi.∇vi =

e

mi
(E+ vi ×B) , (2)

where ni and vi are resp. the ionic number density and
velocity field, E, B denote the electromagnetic field, mi

is the ions mass, and e is the elementary charge.
The continuity and momentum equations for inertial

degenerate electrons are given by

∂ne

∂t
+∇ · (neve) = 0, (3)

∂ve

∂t
+ ve.∇ve = − e

me
(E+ ve ×B)− 1

neme
∇p

+
(α
3

) }2

2m2
e

∇
(

1
√
ne

∇2√ne

)
, (4)

where ne and ve are resp. the electronic number density
and velocity field, me is the electron mass, ~ is the re-
duced Planck constant, p is the electronic fluid pressure,
and α is a factor detailed below, introduced to better fit
kinetic theory results.
In order to derive the equation of state for electron

pressure, consider a local quasi-equilibrium Fermi-Dirac
particle distribution function f = f(v, r, t) for electrons
[13, 19, 22], given by

f(v, r, t) =
A

1 + eβ(E−µ)
, (5)

where β = 1/(κBT ), E = mev
2/2, v = |v| and µ is the

chemical potential regarded as a slowly varying function
of position r and time t. Besides, κB is the Boltzmann
constant, and T is the thermodynamic electrons temper-
ature. In addition, the normalization condition at equi-
librium

∫
fd3v = n0 gives

− n0

Li3/2(−eβµ(0))

(
βme

2π

)3/2

= 2
( me

2π~

)3
= A , (6)
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where µ(0) is the equilibrium chemical potential which is
related to the equilibrium number density n0. The factor
two in the middle term of the above equality is due to the
electron’s spin. Equation (6) contains the polylogarithm
function Liν(−z) which for ν > 0 can be defined as

Liν(−z) = − 1

Γ(ν)

∫ ∞

0

sν−1

1 + es/z
ds , ν > 0 (7)

where Γ(ν) is the gamma function. For ν < 0 one applies

Liν(−z) =

(
z
∂

∂z

)
Liν+1(−z), (8)

as many times as necessary, where ν + 1 > 0.
The scalar pressure follows from the standard defini-

tion for an equilibrium with zero drift velocity,

p =
me

3

∫
fv2d3v, (9)

which yields,

p =
ne

β

Li5/2(−eβµ)

Li3/2(−eβµ)
. (10)

The last term on right hand side of Eq. (4) is the Bohm
potential term which is responsible for quantum tunnel-
ing effects. The constant α in the Bohm potential term
is included so that fluid and kinetic theories yield the
same dispersion relation in the long wavelength limit, as
described in detail in [13, 19] and references therein. It
can be also shown that

ne = n0

Li3/2(−eβµ)

Li3/2(−eβµ(0))
. (11)

The numerical coefficient α appearing in the Bohm po-
tential term in Eq. (4) is defined in [13],

α =
Li3/2(−eβµ(0)) Li−1/2(−eβµ(0))

[Li1/2(−eβµ(0))]2
, (12)

which is expressed as a function of the equilibrium fugac-
ity z = exp(βµ(0)). In the classical limit (z ≪ 1) one has
α ≈ 1, while in the full degenerate limit (z ≫ 1) one has
α ≈ 1/3.
The necessary Maxwell’s equations are

∇×E = −∂B

∂t
, (13)

and

∇×B = µ0j+
1

c2
∂E

∂t
, (14)

where µ0 is the free space permeability and c the speed
of light. The current density is given by

j = e(nivi − neve). (15)

The equilibrium is defined by ne,i = n0, ve,i = 0, E = 0
and B = B0ẑ, a uniform magnetic field. In what follows,
the displacement current in Eq. (14) will be neglected
under the assumption that the wave phase velocity is
much smaller than the speed of light.
Without loss of generality, we assume that the mag-

netosonic wave is propagating in the x-direction i.e.,
∇ = (∂x, 0, 0), while the electric field is lying in the XY-
plane i.e., E = Ex ı̂+Ey ȷ̂ and the magnetic field is along

the z-axis i.e., B = B0k̂ + Bz k̂, for first order quanti-
ties Ex, Ey and Bz. All perturbations are supposed to
be proportional to exp (ik · r− iωt), where k = kı̂ and
ω are the wave vector and the wave frequency, respec-
tively. With this geometry, the linear dispersion relation
for magnetosonic waves in a quantum plasma with arbi-
trary degeneracy of electrons can be written as

ω2 =

(
c2s +

α

12

}2

mime
k2
)
k2

+
k2v2a

1 + k2λ2
e

, (16)

where the ion-acoustic speed is defined as

cs =

(
1

βmi

Li3/2(−eβµ(0))

Li1/2(−eβµ(0))

)1/2

, (17)

while the Alfvén speed is vA = B0/
√
µ0min0.

In the case k2λ2
e >> 1, the dispersion relation descri-

bed in Eq.(16) becomes

ω2 =

(
c2s +

α

12

}2

mime
k2
)
k2 +ΩiΩe. (18)

where Ωi = eB0/mi and Ωe = eB0/me are the ion and
electron gyrofrequencies, respectively.
Now in the absence of Bohm potential force in the

model, we have

ω2 = c2sk
2 +ΩiΩe. (19)

In case of strong magnetic field (c2sk
2 << ΩiΩe), one has

lower hybrid oscillations i.e. ω =
√
ΩiΩe.

Wave dispersion effects appear through the electron
skin depth λe =

√
c/ωpe, where ωpe =

√
n0e2/(meε0)

is the electrons plasma frequency (with ε0 being the free
space permittivity). Besides, wave dispersion arises due
to the second term in the square bracket appears of Eq.
(16), which is due to the Bohm term. In the long wave-
length limit, one simply has the phase velocity

ω

k
=
√
c2s + v2A, (20)

which is the standard magnetosonic wave for vA ≪ c, but
with a modified ion-sound speed. In the dilute plasma
case with a small fugacity z ≪ 1 and ignoring quantum
diffraction, we have

ω2 = c2sk
2 +

k2v2A
1 + k2λ2

e

, (21)
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which is the same as Eq. (16) in Ref.[25], where in this

case cs =
√
κBT/mi.

In the fully degenerate case, we have z ≫ 1 and Eq.
(16) can be written as

ω2 =

(
c2s +

}2

36mime
k2
)
k2 +

k2v2A
1 + k2λ2

e

, (22)

where the ion-acoustic speed becomes cs =
√
2εF /(3mi),

in terms of the electrons Fermi energy εF = κBTF =
[~2/(2me)] (3π

2n0)
2/3, which is the same as the equilib-

rium chemical potential in the deep degenerate situation,
with a Fermi temperature TF .

By definition, in a fluid treatment kinetic aspects such
as finite Larmor radius effects can not be addressed. In
view of the cold ions assumption, this amounts to con-
sider a long wavelength λ such that λ ≫ vT /Ωe, where
vT =< v2 >1/2 is the electrons thermal speed. Here,

< v2 >=

∫
fv2d3v

n
=

3

meβ

Li5/2(−eβµ)

Li3/2(−eβµ)
, (23)

an expresssion valid for any degeneracy degree. In the
fully degenerate case one has < v2 >= (3/5)v2F , while on
the opposite limit of a dilute plasma one has < v2 >=
3κBT/m.

III. NORMALIZED SET OF DYNAMIC
EQUATIONS

It is convenient to write the above set of equations
(1)-(4) and 11) in dimensionless and component form,
as follows. The normalization of the number densities
is defined by ñe,i = ne,i/n0, while the normalized fluid
velocities are ṽe,i = ve,i/cs. Moreover, we use the fol-
lowing normalizations for space, time, electric and mag-
netic fields: x̃ = ωpi x/cs, t̃ = ωpit, Ẽ=eE/ (micsωpi)

and B̃ = B/B0. The ratio of ion-cyclotron to ion plasma
frequencies is defined as Ω = Ωi/ωpi, where Ωi = eB0/mi

and ωpi =
√
n0e2/(miε0). The dimensionless quantum

diffraction parameter is given [13, 19] by

H =
β~ωpe√

3
×

(
Li−1/2(−eβµ(0))

Li3/2(−eβµ(0))

)1/2

. (24)

Finally, δ = mi/me is the ion-electron mass ratio. With
these conventions, the ion continuity equation is given by

∂ñi

∂t̃
+

∂

∂x̃
(ñiṽix) = 0. (25)

The x and y components of the ion momentum equation
are written as

∂ṽix

∂t̃
+ ṽix

∂

∂x̃
ṽix = Ẽx +Ω ṽiyB̃, (26)

∂ṽiy

∂t̃
+ ṽix

∂

∂x̃
ṽiy = Ẽy − Ω ṽixB̃. (27)

The electron continuity equation is given by

∂ñe

∂t̃
+

∂

∂x̃
(ñeṽex) = 0. (28)

The x and y components of the electrons momentum
equation are written as

∂ṽex

∂t̃
+ ṽex

∂

∂x̃
ṽex = −δ Ẽx − δ Ω ṽeyB̃

−δ
Li1/2(−eβµ(0))

Li1/2(−eβµ)

∂

∂x̃
ñe ,

+
1

2
δ H2 ∂

∂x̃

(
1√
ñe

∂2

∂x̃2

√
ñe

)
, (29)

∂ṽey

∂t̃
+ ṽex

∂

∂x̃
ṽey = −δ Ẽy + δ Ω ṽexB̃. (30)

ñe =
Li3/2(−eβµ)

Li3/2(−eβµ(0))
. (31)

The z component of the Faraday’s law gives

∂Ẽy

∂x̃
= −Ω

∂B̃

∂t̃
. (32)

The x and y components of Ampere’s law yield

0 = ñiṽix − ñeṽex, (33)

Ω
∂B̃

∂x̃
=

c2s
c2

(ñeṽey − ñiṽiy) . (34)

For simplicity, the telda (∼) sign on the dimensionless
quantities is not shown in the remaining calculations.

IV. DERIVATION OF A KDV EQUATION FOR
MAGNETOSONIC SOLITONS

In order to derive the KdV equation for magnetosonic
waves with arbitrary degeneracy of electrons, the well
known reductive perturbation method is employed [26].
The stretching of spatial and temporal independent vari-
ables is described as follows,

ξ = ϵ1/2(x− v0t), τ = ϵ3/2t.

Here ϵ is a small expansion parameter which characterizes
the nonlinearity strength and v0 is the phase velocity of
the wave, to be determined later on.
We expand the dynamical variables in terms of the

smallness parameter ϵ as follows (where j = e, i),

nj = 1 + ϵnj1 + ϵ2nj2 + ...

vjx = ϵvjx1 + ϵ2vjx2 + ...

vjy = ϵ3/2vjy1 + ϵ5/2vjy2 + ...

Ex = ϵ3/2Ex1 + ϵ5/2Ex2 + ...

Ey = ϵEy1 + ϵ2Ey2 + ...

B = 1 + ϵBz1 + ϵ2Bz2 + ....

µ = µ(0) + ϵµ1 + ϵ2µ2 + ... (35)
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Now we apply the above perturbation scheme in Eqs.
(25) to (34). The lowest order of the x component of the
ion continuity and momentum equations give the follow-
ing set of equations,

−v0
∂ni1

∂ξ
+

∂vix1
∂ξ

= 0, (36)

−v0
∂vix1
∂ξ

= Ex1 +Ω viy1, (37)

Ey1 = Ω vix1. (38)

Similarly, the lowest order (ϵ3/2) terms from the electron
continuity and the x and y components of the electron
momentum equations are given as follows,

−v0
∂ne1

∂ξ
+

∂vex1
∂ξ

= 0, (39)

v0
∂vex1
∂ξ

= δ Ex1 + δΩ vey1 + δ
∂ne1

∂ξ
, (40)

Ey1 = Ω vex1. (41)

The lowest order (ϵ) terms of Eq. (31) gives

µ1 =
1

β

Li3/2(−eβµ(0))

Li1/2(−eβµ(0))
ne1. (42)

The lowest order (ϵ3/2) terms from z component of the
Faraday’s law gives

∂Ey1

∂ξ
= v0Ω

∂Bz1

∂ξ
. (43)

The lowest order (ϵ) and (ϵ3/2) terms from the x and y
components of the Ampere’s law, respectively, yields

vix1 − vex1 = 0, (44)

c2s
c2

(vey1 − viy1) = Ω
∂Bz1

∂ξ
. (45)

Using the plasma approximation, the lowest order terms
of the quasi-neutrality condition give ni1 ≃ ne1.
The normalized phase velocity in the long wavelength

approximation, obtained from Eqs. (36) to (45), is given
by

v0 = ±

√
v2A
c2s

+ 1, (46)

which is the same as Eq. (20) for a dispersionless
wave. Without loss of generality, the positive sign will
be adopted.

The higher order set of equations is given as follows,

v0
∂ni2

∂ξ
− ∂vix2

∂ξ
= f1, (47)

v0
∂ne2

∂ξ
− ∂vex2

∂ξ
= f2, (48)

v0
∂vix2
∂ξ

+ Ex2 +Ω viy2 = f3, (49)

Ey2 − Ω vix2 = f4, (50)

v0
∂vex2
∂ξ

− δEx2 − δΩ vey2 − δ
∂ne2

∂ξ
= f5, (51)

δEy2 − δΩ vex2 = f6, (52)

∂Ey2

∂ξ
− Ωv0

∂Bz2

∂ξ
= f7, (53)

vix2 − vex2 = f8, (54)

c2s
c2

(viy2 − vey2) + Ω
∂Bz2

∂ξ
= f9, (55)

where the expression of f1 to f9 are given in the Ap-
pendix. Using the above set of equations, we find that

f2
v0

+f3+
f5
δ
−Ωc2

c2s
f9−

Ωc2

v0c2s
f7+

1

δ

(
Ωc2

v0c2s

)
∂f6
∂ξ

= 0. (56)

Equation(46) has been used in the derivation of Eq. (56).
In order to express the first order quantities vix1, ni1,

ne1, Bz1, Ex1, Ey1, viy1 and vey1 in terms of vex1, we
first solve Eqs. (50) and (52), which gives a relation
between electron and ion momentum along y-axis i.e.,
vey1 = −δ viy1. Using this relation and Eqs. (36)-(45),
the variables vix1, ni1, ne1, Bz1, Ex1, Ey1, viy1 and vey1
in terms of vex1 are written as

Ey1 = Ωvex1, (57)

vix1 = vex1, (58)

ni1 = ne1 =
vex1
v0

, (59)

Bz1 =
vex1
v0

, (60)

Ex1 = − 1

v0δ

(
v20 δ + 1

) ∂vex1
∂ξ

≈ −v0
∂vex1
∂ξ

, (61)
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viy1 =
1

Ωv0δ

∂vex1
∂ξ

, (62)

vey1 =
1

Ωv0

(
v20 − 1

) ∂vex1
∂ξ

. (63)

In Eq. (61), the approximation comes from δ ≫ 1, v0 >
1. Using the above expressions (57)-(63) in Eq. (56),
we obtain the KdV equation in terms of the normalized
electron perturbed fluid velocity,

∂vex1
∂τ

+ a vex1
∂vex1
∂ξ

+ b
∂3vex1
∂ξ3

= 0, (64)

where the nonlinearity and dispersion coefficients a and
b are defined as

a =
1

2

[
3− 1

v20

(
1

δ
+ α

)]
≈ 1

2

(
3− α

v20

)
> 0, (65)

b =
1

2v0

(
Ω2c4

δ c4s
− H2

4

)
. (66)

In Eq. (65), the approximation comes from δ ≫ 1 and
α being of order unity. In addition, the positive sign
of a is assured by α ≤ 1, v0 ≥ 1. When the dispersion

coefficient b = 0 at H = 2Ωc2/
(√

δc2s

)
, Eq. (64) gives

a shock instead of a solitonic solution. A simple algebra
yields the shock condition

b = 0 ⇒ memiλ
2
ev

2
A =

α~2

12
, (67)

within the employed degree of approximation. However,
it should be stressed that when the coefficient b goes
to zero, the leading dispersion contribution appears at
a higher order, including a fifth-order spatial derivative
term, yielding the Kawahara equation [27]. This remark
is applicable to all shock conditions discussed herein. The
corresponding reductive perturbation method would then
be necessarily generalized, an issue which will be not con-
sidered in the present work.

The limiting cases of Eq. (64) are obtained as follows.
In the dilute plasma case (z ≪ 1), we have

∂vex1
∂τ

+
(2u2

0 + v2A)

2u2
0

vex1
∂vex1
∂ξ

(68)

+
ω2
pi

2u0c3s

(
λ2
ev

2
A − ~2

12memi

)
∂3vex1
∂ξ3

= 0,

where u0 =
√
v2A + c2s is the magnetosonic speed and

cs =
√

κBT/mi is the ion-acoustic speed in this situa-
tion. Equation (68) is the same as Eq. (30) of Ref.[28],
when written in dimensional form and in terms of the
first order perturbed electron density ne1 using relation
(59), and neglecting quantum diffraction.

The shock condition (b = 0) in the dilute case can be
expressed as

Ωe

ωpe
=

~ωpe

2
√
3mec2

, (69)

which depends only on density and magnetic field
strength, without a temperature dependence as long as
T ≪ TF , and where Ωe = eB0/me is the electrons cy-
clotron frequency. Working out the numbers, Eq. (69)
yields

n0

B0
= 1.49× 1029 m−3 T−1 , (70)

in terms of SI units. The equality is quite affordable for
typical laboratory and astrophysics environments, and
constitutes a qualitative structural change due to quan-
tum diffraction effects, within the present level of approx-
imation.

On the other hand, in the dense plasma case (z ≫ 1),
we have

∂vex1
∂τ

+
(8u2

0 + v2A)

6u2
0

vex1
∂vex1
∂ξ

(71)

+
ω2
pi

2u0c3s

(
λ2
ev

2
A − ~2

36memi

)
∂3vex1
∂ξ3

= 0,

where now cs =
√

2εF /(3mi). The quantum diffraction
parameter now is H = }ωpe/(2κBTF ). The shock condi-
tion is similar to the dilute case:

Ωe

ωpe
=

~ωpe

6mec2
, (72)

yielding

n0

B0
= 2.58× 1029 m−3 T−1 , (73)

which is also empirically accessible.

The one-soliton solution of Eq. (64) is given by

vex1 = Ψ0 sech
2
( η

∆

)
. (74)

where η = ξ − uτ , denoting a stationary hump in the
co-moving frame with a velocity u, applying decaying
boundary conditions i.e., vex1, ∂vex1/∂η and ∂2vex1/∂η

2

going to zero as η → ±∞. Here Ψ0 is the amplitude and
∆ is the width of magnetosonic soliton:

Ψ0 =
3u

a
, ∆ =

√
4b

u
. (75)

It can be seen from Eq. (66) that the amplitude of the
soliton depends on quantum degeneracy only, while the
width also depends on quantum diffraction.
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V. NUMERICAL ESTIMATES AND COUPLING
PARAMETER

By definition, the present model applies to any degen-
eracy degree. However, obviously it is more pertinent
when the thermal and Fermi temperatures are of the
same order. Therefore, in this Section we develop the
relevant numerical estimates arising from the previous
calculations, setting T = TF . In this case, from Eq. (6)
it is easy to obtain a fugacity value z ≈ 1, which we adopt
in what follows. Also from Eq. (6), we get

n0 = −2

(
me

2πβ~2

)3/2

× Li3/2(−z) , (76)

which for a fixed fugacity is a function of the temperature
only. In this context, we obtain Figure 1, for typically
dense plasmas.

5.5 6.0 6.5 7.0 7.5 8.0
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33.5

log10 T HKL

lo
g
1
0
n 0
Im
-
3
M

FIG. 1: Plasma number density as a function of temperature,
from Eq. (76) and a fixed fugacity z = 1.

A necessary validity condition for our mean field model
disregarding strong interactions between the charge car-
riers [29] is a small coupling parameter g, which is the
ratio between the average potential and kinetic energies.
The coupling parameter g was determined in Ref.[19] as

g = −2αF

√
2βmec2

3 (3
√
π)

1/3
×

[Li23/2(−z)]2/3

Li5/2(−z)
, (77)

where αF = e2/(4πε0~c) ≃ 1/137 is the fine structure
constant [30]. We then get Figure 2, which shows g < 1
for sufficiently high temperatures.

The increase of the ion-acoustic speed with the elec-
tronic temperature (presently with same numerical value
as the Fermi temperature) is shown in Figure 3. In Fig-
ure 4, it is shown the decrease in the Alfvén speed due
to the increase of the number density and hence the in-
crease of temperature (for z = 1). Typical Alfvén speeds
are shown in Figure 4, for a few magnetic field strengths.

The dependence of the quantum diffraction parameter
H on the electrons thermal temperature is shown in Fig-
ure 5. It is seen that H attain reasonably large values at
least for sufficiently cold plasma.
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FIG. 2: Plasma coupling parameter g versus electron temper-
ature T , from Eq. (77) and fugacity z = 1
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FIG. 3: Ion-acoustic speed cs as a function of temperature,
from Eq. (17) and z = 1.

The variation of the dispersive coefficient b of the KdV
equation (64) for magnetosonic waves at different mag-
netic field intensities is shown in Figure 6. It can be
seen from the figure that b < 0 for electron temperatures
T > 106K. In this case only rarefactive magnetosonic
solitons structures are formed with u < 0 since the non-
linearity coefficient a remains positive. The velocity of
the nonlinear structure u has to be negative for dispersive
coefficient b < 0 case to give the real value of the width
of the soliton defined in Eq.(75), which means that the
speed of the nonlinear rarefactive soliton will be less than
the phase speed of the magnetosonic waves as discussed
in detail in Ref.[13]. However, for electron temperature
values less than 106 K, the magnetosonic soliton compres-
sive structure is formed as the dispersive coefficient b > 0
for which u > 0, and it moves with the speed greater than
the speed of the magnetosonic waves in the plasma with
arbitrary degeneracy of electrons. It can also be seen
from the figure 6 that with the increase of the magnetic
field intensity the range of electron thermal temperature
for the formation of magnetosonic dip structures in the
higher temperature region is decreased.
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FIG. 4: Alfvén wave speed vA as a function of temperature,
for B0 = 5 Tesla (solid curve) and B0 = 10 Tesla (dashed
curve), at z = 1.
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FIG. 5: Quantum diffraction parameter H as a function of
temperature, from Eq. (24) and z = 1.

Finally, the variations of dimensionless parameter Ω =
Ωi/ωpi (ratio of ion-cyclotron to ion plasma frequencies)
is plotted in figure 7. It can be seen that the value of
Ω decreases with the increase in the electrons thermal
temperature. However, it obviously increases with the
magnetic field intensity as shown in the same figure.

VI. CONCLUSIONS

Besides Alfvén waves, magnetosonic waves are the
most basic low frequency excitations propagating in
electron-ion magnetized plasmas. We have analyzed for
the first time the linear and weakly nonlinear propaga-
tion of magnetosonic waves in a quantum plasma with
arbitrary degeneracy of electrons and with inclusion of
matter-wave diffraction effects. Using perturbation the-
ory, we have derived the appropriate nonlinear evolution
equation for the propagation of quantum magnetosonic
waves. In this case, it is a KdV equation whose coef-

5.5 6.0 6.5 7.0 7.5 8.0

0.00

0.05

0.10

log10 T HKL

b

FIG. 6: Nonlinear dispersive coefficient b as a function of
temperature, from Eq. (66), for B0 = 5 Tesla (solid curve)
and B0 = 10 Tesla (dashed curve), at z = 1.

5.5 6.0 6.5 7.0 7.5 8.0
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2.´10-7

4.´10-7

6.´10-7

8.´10-7

log10 T HKL

W

FIG. 7: The ratio Ω of ion-cyclotron to ion plasma frequencies
as a function of temperature, for B0 = 5 Tesla (solid curve)
and B0 = 10 Tesla (dashed curve), at z = 1.

ficients strongly depend on the degeneracy degree and
strength of the quantum diffraction effects. The impact
of the quantum degeneracy and diffraction effects on soli-
ton propagation is discussed with explicit numeric esti-
mates for systems in the intermediate range of Maxwell-
Boltzmann and Fermi-Dirac statistics. Conditions for
shock development, within the present weakly nonlin-
ear limits, were worked out in detail. The validity of
the weak coupling assumption was analyzed in concrete
cases. Generically, our main results are more relevant for
plasmas where the Fermi and thermodynamic tempera-
ture are of the same order. Finally, we observe that a rig-
orous treatment of exchange-correlation effects in quan-
tum plasma fluid models at arbitrary degeneracy degree
is still unavailable, and is under analysis for future works.
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APPENDIX A: FUNCTIONS DEFINED AFTER
COLLECTING FIRST AND SECOND ORDER
TERMS FROM PERTURBATION THEORY

The functions f1 to f9 defined after equation (46) are
given as follows:

f1 =
∂ni1

∂τ
+

∂

∂ξ
(ni1vix1) , (a1)

f2 =
∂ne1

∂τ
+

∂

∂ξ
(ne1vex1) , (a2)

f3 =
∂vix1
∂τ

+ vix1
∂

∂ξ
vix1 − Ω viy1Bz1 , (a3)

f4 = −v0
∂viy1
∂ξ

+Ω vix1Bz1 , (a4)

f5 =
∂vex1
∂τ

+ vex1
∂

∂ξ
vex1 + δΩ vey1Bz1

− δ α ne1
∂ne1

∂ξ
− δ

H2

4

∂3ne1

∂ξ3
, (a5)

f6 = v0
∂vey1
∂ξ

+ δΩ vex1Bz1 , (a6)

f7 = −Ω
∂Bz1

∂τ
, (a7)

f8 = (ne1 − ni1) vex1 , (a8)

f9 =
c2s
c2

(ne1vey1 − ni1viy1) . (a9)
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