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CEP 91501-970, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil and
Theoretical Physics Division (TPD), PINSTECH, P. O. Nilore Islamabad 44000, Pakistan

Linear and nonlinear ion-acoustic waves are studied in a fluid model for non-relativistic, unmagne-
tized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for
electrons follows from a local Fermi-Dirac distribution function and apply equally well both to fully
degenerate or classical, non-degenerate limits. Ions are assumed to be cold. Quantum diffraction
effects through the Bohm potential are also taken into account. A general coupling parameter valid
for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is
obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute
systems. In the long wavelength limit the results agree with quantum kinetic theory. Using the
reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear
solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton
hump and dip structures are formed depending on the value of the quantum parameter for the
degenerate electrons, which affect the phase velocities in the dispersive medium.
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I. INTRODUCTION

The study of degenerate plasma is important due to
its applications e.g. to strong laser produced plasmas
[1], high density astrophysical plasmas such as in white
dwarfs or neutron stars [2], or large density electronic
devices (as in the drain region of n+nn+ diodes [3]). In
plasmas, the quantum effects are more relevant for elec-
trons rather than ions because of their lower mass. The
quantum nature of the charge carriers manifests with the
inclusion of both Pauli exclusion principle for fermions
and Heisenberg uncertainty principle due to the wave like
character of the particles. Accordingly, electrons obey
the Fermi-Dirac statistics and their equation of state is
determined using the Fermi-Dirac distribution. On the
other hand the quantum diffraction effects are usually
modeled by means of quantum recoil terms in kinetic
theory or the Bohm potential in fluid theory, besides
higher order gradient corrections [4, 5].

Accordingly, the wave propagation in a degenerate
plasma can be studied using at least two main approaches
i.e., kinetic and hydrodynamic models. In kinetic theory,
the unperturbed electron distribution is frequently given
by a Fermi-Dirac function, while in hydrodynamics the
momentum equation for electrons is made consistent with
the equation of state of a degenerate electron Fermi gas
[4, 5]. In fluid models, the ion-sound wave propagation
in plasmas with degenerate electrons has been investi-
gated by a number of authors [6–12], using the equation
of state for a cold (fully degenerate) Fermi electron gas,
with a negligible thermodynamic temperature. The en-
ergy distribution of a degenerate electron gas described

by the Fermi-Dirac distribution is characterized by inde-
pendent parameters, one of which is the chemical poten-
tial, while the other is the thermodynamic temperature.
On the other hand, the energy spread for the classical
ideal electron gas obeying Maxwell-Boltzmann distribu-
tion is uniquely determined by the thermodynamic tem-
perature. The equation of state for the fully degener-
ate electron gas so reduces to an one-parameter problem
i.e., the chemical potential. Therefore, it is of interest to
study the linear and specially nonlinear wave propagation
in the intermediate regime, depending on the competition
between the two parameters i.e., chemical potential and
thermal temperature [13], including quantum diffraction.

Our treatment is specially relevant to borderline sys-
tems with T ≈ TF , which are neither strongly degener-
ate nor sufficiently well described by classical statistics,
where T and TF are resp. the electron thermodynamic
and Fermi temperatures. A striking example is provided
by inertial confinement fusion plasmas [14], with particle
densities ranging from 1030m−3 to 1032m−3, and thermo-
dynamic temperatures above 107K. During laser irradi-
ation of the solid target, quantum statistical effects tend
to be more relevant immediately after compression, be-
fore the heating phase. Moreover, laboratory simulation
of astrophysical scenarios involving dense plasmas better
fit the intermediate quantum-classical regime [15]. For
these reasons and potential applications on e.g. ultra-
small semiconductor devices operating in a mixed dense-
dilute regime [3], it is desirable to have a general macros-
copic model covering both classical and quantum statis-
tics, besides quantum diffraction.

Previously, Maafa [16] studied the ion-acoustic and
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Langmuir waves in a plasma with arbitrary degenera-
cy of electrons using classical kinetic theory, linearizing
the Vlasov-Poisson system around a Fermi-Dirac equilib-
rium. Using quantum kinetic theory, Melrose and Mush-
taq derived the electron-ion plasma low-frequency longi-
tudinal response including quantum recoil, first for di-
lute (Maxwell-Boltzmann equilibrium) plasmas [18] and
then [19] for general degeneracy, in a Fermi-Dirac equili-
brium. These works were restricted to linear waves only.
Eliasson and Shukla [20] derived nonlinear quantum elec-
tron fluid equations by taking the moments of the evo-
lution equation for the Wigner function in terms of a
local Fermi-Dirac equilibrium with an arbitrary thermo-
dynamic temperature. In this model quantum diffrac-
tion manifest in terms of the Bohm potential. The high
(classical) as well as the low (degenerate) temperature
limits of the obtained fluid equations were also discussed
in connection to Langmuir waves. Recently Dubinov et
al. [21] investigated the nonlinear theory of ion-acoustic
waves in isothermal plasmas with arbitrary degeneracy,
but without including quantum recoil. They presented
the equation of state for ions and electrons by consider-
ing them as warm (T 6= 0) Fermi gases. The nonlinear
analysis was done using a Bernoulli pseudo-potential ap-
proach. The ranges of the phase velocities of the periodic
ion-acoustic waves and the soliton velocity were investi-
gated. However, for simplicity they ignored the quantum
Bohm potential, which increases the order of the resulting
dynamical equations. Our central issue here is to analyze
the combined quantum statistical and quantum diffrac-
tion effects on linear and nonlinear ion-acoustic struc-
tures in plasmas, in an analytically simple (but hopefully
not simplistic) approach.

The manuscript is organized in the following way. In
Section II, the basic set of hydrodynamic equations is
proposed and the barotropic equation of state defined,
for a general Fermi-Dirac equilibrium. In Section III, the
linear dispersion relation for quantum ion-acoustic waves
is derived, following the fluid model. Comparison with
known results from quantum kinetic theory allows to de-
termine a fitting parameter in the quantum force, so that
the macroscopic and microscopic approaches coincide in
the long wavelength limit. In Section IV, nonlinear wave
structures are studied by means of the reductive per-
turbation method and the associated Korteweg-de Vries
(KdV) equation. The associated quantum soliton solu-
tion is obtained. Section V studies the possibility of for-
ward and backward propagating solitons in real systems.
Finally, Section VI collect some conclusions.

II. MODEL EQUATIONS

In order to study ion-acoustic waves in unmagnetized
electron-ion plasmas with arbitrary electron tempera-
ture, we use the set of dynamic equations described as
follows [4].

The ion continuity and momentum equations are res-

pectively given by

∂ni
∂t

+
∂

∂x
(niui) = 0 , (1)

∂ui
∂t

+ ui
∂ui
∂x

= − e

mi

∂φ

∂x
. (2)

The momentum equation for the inertialess quantum
electron fluid is given by

0 = e
∂φ

∂x
− 1

ne

∂p

∂x
+
α ~2

6me

∂

∂x

(
1
√
ne

∂2

∂x2
√
ne

)
. (3)

The Poisson equation is written as

∂2φ

∂x2
=

e

ε0
(ne − ni) , (4)

where φ is the electrostatic potential. The ion fluid den-
sity and velocity are represented by ni and ui respec-
tively, while ne is the electron fluid density. Also, me

and mi are the electron and ion masses, −e is the elec-
tronic charge, ε0 the vacuum permittivity and ~ the re-
duced Planck constant. In Eq. (3), α is a dimension-
less constant factor to be determined and p = p(ne) is
the electron’s fluid scalar pressure, to be specified by a
barotropic equation of state obtained in the continuation.

The last term proportional to ~2 on the right hand side
of the momentum equation for electrons is the quantum
force, which arises due to the quantum Bohm potential,
responsible for quantum diffraction or quantum tunnel-
ing effects due to the wave like nature of the electrons.
The dimensionless quantity α will be selected in order to
exactly fit the kinetic theory linear dispersion relation in
a three-dimensional Fermi-Dirac equilibrium, as detailed
in Section III. It is known that the qualitative role of the
Bohm potential is to provide extra dispersion. Howe-
ver, the precise numerical coefficient in its definition is a
debatable subject involving e.g. the dimensionality and
the temperature [22]. For instance, for a local Maxwell-
Boltzmann equilibrium, Gardner [23] has found a factor
α = 1. Frequently, the factor α is set in order to fit nu-
merical results from kinetic theory [24], which is in the
spirit of the present work. On the other hand, quantum
effects on ions are ignored in the model in view of their
large mass. For simplicity, ion temperature effects are
also disregarded.

In order to derive the equation of state, consider a
local quasi-equilibrium Fermi-Dirac particle distribution
function f = f(v, r, t) for electrons [25], given by

f(v, r, t) =
A

1 + eβ(ε−µ)
, (5)

where β = 1/(κBT ), ε = mev
2/2, v = |v| and µ is the

chemical potential regarded as a function of position r
and time t. Besides, κB is the Boltzmann constant, T
is the (constant) thermodynamic electron’s temperature
and v is the velocity. In addition, A is chosen to ensure
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the normalization
∫
fd3v = ne, so that

A = − ne
Li3/2(−eβµ)

(
βme

2π

)3/2

= 2
( me

2π~

)3
, (6)

the last equality following from the Pauli principle (the
factor two is due to the electron’s spin). Therefore, in the
fluid description, µ and A are supposed to be slowly vary-
ing functions of space and time. Equation (6) contains
the poly-logarithm function Liν(η) of index ν, which can
be generically defined [26] by

Liν(η) =
1

Γ(ν)

∫ ∞
0

sν−1

es/η − 1
ds , (7)

where Γ(ν) is the Gamma function. We also observe that
a three-dimensional equilibrium is assumed, although for
electrostatic wave propagation only one spatial variable
x is needed in the model equations.

The scalar pressure follows from the standard defini-
tion for an equilibrium with zero drift velocity,

p =
me

3

∫
fv2d3v , (8)

yielding

p =
ne
β

Li5/2(−eβµ)

Li3/2(−eβµ)
. (9)

It is worth to consider some limiting cases of the
barotropic equation of state. From Eq. (9), in the di-
lute plasma limit case with a local fugacity eβµ � 1 and
using Liν(−eβµ) ≈ −eβµ, one has

p = nekBT , (10)

which is the classical isothermal equation of state.
On the opposite, dense limit with a large local fugacity

eβµ � 1, from Liν(−eβµ) ≈ − (βµ)
ν
/Γ(ν + 1) the result

is

p =
2

5
n0εF

(
ne
n0

)5/3

, (11)

which is the equation of state for a three-dimensional
completely degenerate Fermi gas, expressed in terms
of the equilibrium number density n0. In Eq. (11),
the electron’s Fermi energy is εF = κBTF =
[~2/(2me)] (3π2n0)2/3, which is the same as the equili-
brium chemical potential in the fully degenerate case. In
addition, n0 is the equilibrium electron (and ion) number
density.

The present treatment has similarities, as well as some
different choices, in comparison to Eliasson and Shukla
work [20]. In this article, also a local quasi-equilibrium
Fermi-Dirac distribution function was employed. Howe-
ver, presently a non-constant chemical potential is ad-
mitted. In addition, in Ref. [20] the focus was on

situations involving one-dimensional laser-plasma com-
pression experiments, while here it is assumed a three-
dimensional isotropic equilibrium. Finally, the present
work deals with low-frequency (ion-acoustic) instead of
high-frequency (Langmuir) waves.

In passing, from Eq. (6) one deduce the useful relation

ne = n0
Li3/2(−eβµ)

Li3/2(−eβµ0)
, (12)

where µ0 is the equilibrium chemical potential, satisfying

− n0
Li3/2(−eβµ0)

(
βme

2π

)3/2

= 2
( me

2π~

)3
. (13)

Using the equation of state (9), the chain rule and the
property dLiν(η)/dη = (1/η)Liν−1(η), the momentum
equation (3) for the inertialess electron fluid becomes

0 = e
∂φ

∂x
− 1

βne

Li3/2(−eβµ)

Li1/2(−eβµ)

∂ne
∂x

+
α ~2

6me

∂

∂x

(
1
√
ne

∂2

∂x2
√
ne

)
. (14)

Finally, using Eq. (12), we have the alternative form

0 = e
∂φ

∂x
− 1

βn0

Li3/2(−eβµ0)

Li1/2(−eβµ)

∂ne
∂x

+
α ~2

6me

∂

∂x

(
1
√
ne

∂2

∂x2
√
ne

)
, (15)

containing the minimal number of poly-logarithmic func-
tions with a non-constant argument.

It is worth noticing that the model does not in-
clude collisional damping, which is reasonable if the av-
erage electrostatic potential per particle 〈U〉 is much
smaller than the corresponding average kinetic energy
〈K〉. For any degree of degeneracy, one can estimate
〈U〉 ≈ e2/(4πε0rS), where the Wigner-Seitz ratio rS is
defined by (4πr3S/3)n0 = 1. On the other hand, from
〈K〉 = [me/(2ne)]

∫
fv2d3v and evaluating on equili-

brium, one derive the general coupling parameter

g ≡ 〈U〉
〈K〉

=
1

6

(
4

3π2

)1/3
e2n

1/3
0 β

ε0

Li3/2(−eβµ0)

Li5/2(−eβµ0)

= −
√
βme/2

34/3π7/6

e2

ε0~
(Li23/2(−eβµ0))2/3

Li5/2(−eβµ0)
, (16)

covering both degenerate and non-degenerate systems,
in the non-relativistic regime. In the last equality in Eq.
(16) it was used the expression (13) of the equilibrium
density in terms of the equilibrium fugacity z = eβµ0

and the temperature T . In the dilute case, it follows
from the properties of the poly-logarithm function that
g ∝ 〈U〉/(κBT ), while in the dense case g ∝ 〈U〉/εF ,
with µ0 ≈ εF .
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For both dilute or dense plasmas, the condition for
low collisionality is that the interaction energy should
be small in comparison to the kinetic energy, or g � 1
[27]. Using Eq. (16), the minimal temperature Tm for
low collisionality (g < 1, relaxing the inequality sign) for
both dilute and dense regimes follows from

κBT > κBTm ≡
me

2× 38/3π7/3

(
e2

ε0~

)2
Li

4/3
3/2(−eβµ0)

Li5/2(−eβµ0)

2

.

(17)
The result is shown in Fig. (1), where T > Tm is equiv-
alent to g < 1. Starting from z ≈ 0 and increasing the
density, larger temperatures are needed for ideality, un-
til reaching z = 9.8, T = 8.5 × 104K, corresponding to
n0 = 2.9 × 1029m−3. For z > 9.8, smaller temperatures
are admitted, due to the Pauli blocking effect inhibiting
collisions.

0 10 20 30 40 50

30 000

60 000

90 000

z

TmHKL

FIG. 1: Temperatures for the coupling parameter g < 1 in
Eq. (16) are above the curve, as a function of the fugacity
z = eβµ0 .

For the sake of comparison, instead of

〈K〉 =
3

2
κBT

Li5/2(−eβµ0)

Li3/2(−eβµ0)
, (18)

Zamanian et al. used [28] the useful simpler expression

〈K〉Z =
3

2
κBT +

3

5
εF (19)

as a measure of the kinetic energy per particle. More
precisely, Ref. [28] employed the arithmetic sum of the
thermal and Fermi energies, but in Eq. (19) we set some
numerical factors to have agreement with the exact form
in the dilute and ultra-dense cases where one has resp.
〈K〉 ≈ 3κBT/2 and 〈K〉 ≈ 3 εF /5. In fact, using Eq.
(13) expressing the density in terms of the fugacity and
the temperature, as well as the expression of the Fermi
energy, one find

〈K〉Z
κBT

=
3

2
+

35/3

10

(π
2

)1/3 [
−Li3/2(−eβµ0)

]2/3
,

where the right-hand sides are functions of the fugacity
only. This expression is shown in Fig. (2), compared
to the more exact result found from Eq. (18). It is
seen that the approximate form overestimates the kinetic
energy, due to slow convergence. Nevertheless, by con-
struction, for extreme degeneracy both quantities give
the same numbers.
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FIG. 2: Comparison between the average kinetic energy 〈K〉 -
the continuous curve - given by Eq. (18) and the simpler form
〈K〉z - the dashed curve - given by Eq. (19), as a function of
the fugacity z = eβµ0 . Both energies are normalized to κBT .

On the same spirit one can define a general electron
thermal velocity (in the sense of spreading of velocities)

as vT ≡
√

2〈K〉/me, which is found from Eq. (18),

vT =

(
3

βme

Li5/2(−eβµ0)

Li3/2(−eβµ0)

)1/2

. (20)

In the dilute case one has vT ≈
√

3κBT/me, while in the

dense case vT ≈
√

(6/5) εF /me.
For non-degenerate ions in strongly coupled plasma,

the ion crystallization effects [29, 30] that appear due
to viscoelasticity of the ion fluid in the ion momentum
equation and cause damping of the ion-acoustic wave
are ignored under the assumptions (in three-dimensional
version) τm << ωpi and ∂ui/∂t >> (η/ρi)∇2ui
+(1/ρi) (ζ + η/3)∇ (∇ · ui), where ρi = nimi is the ion
mass density, τm is the viscoelastic relaxation time or
memory function for ions, η is the shear and ζ are the
bulk ion viscosity coefficients, respectively.

III. LINEAR WAVES

A. Fluid theory

We linearize the system given by equations (1)-(15) by
considering the first order perturbations (with a subscript
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1) relative to the equilibrium, as follows,

ni = n0 + ni1 , ne = n0 + ne1 , ui = ui1 ,

φ = φ1 , µ = µ0 + µ1 . (21)

The dispersion relation is obtained assuming plane
wave excitations ∼ exp[i(kx− ωt)], yielding

ω2 =
ω2
pic

2
sk

2
(

1 + α ~2k2

12memic2s

)
ω2
pi +

(
1 + α ~2k2

12memic2s

)
c2sk

2
, (22)

where

cs =

√
1

mi

(
∂p

∂ne

)
0

=

√
1

βmi

Li3/2(−eβµ0)

Li1/2(−eβµ0)
(23)

plays the role of a generalized ion-acoustic speed and
ωpi =

√
n0e2/(miε0) is the ion plasma frequency.

In the long wavelength limit α ~2k4/(12memi) �
c2sk

2 � ω2
pi it follows from Eq.(22) that ω2 ≈ c2sk

2. In

the dilute case with a small fugacity eβµ0 � 1 the well-
known classical result cs ≈ csc ≡

√
κBT/mi is verified.

In the opposite, extremely degenerate case where the fu-
gacity eβµ0 � 1 one find cs ≈

√
(2/3)εF /mi, which is

the ion-acoustic velocity for a three-dimensional ultra-
dense plasma [16]. Finally, the very short wavelength
limit of the dispersion relation gives ion oscillations such
that ω = ωpi, both in the classical or quantum situations.
This happens because the ions are no longer shielded by
electrons when wavelength is comparable to or smaller
than the electron shielding length. It is interesting to
note that taking the square root of both sides of Eq.(22)
is identical to Eq.(4.5) in Ref.[17] for the completely de-
generate plasma case i.e., for α = 1/3.

Using Eq. (23), the ion-acoustic speed cs normalized
to the purely classical expression csc against z = eβµ0

is shown in Fig.(3). It can be seen that as the value of
z increases (i.e. the degeneracy of electrons and plasma
density increase) the ion-acoustic speed also increases.

B. Kinetic theory

To endorse the macroscopic modeling, and to set the
value of the parameter α in front of the quantum force, it
is useful to compare with the microscopic (quantum ki-
netic) results. Considering the Wigner-Poisson system [4]
involving a cold ionic species and electrons, it is straight-
forward to derive the linear dispersion relation

1 =
ω2
pi

ω2
+
ω2
pe

n0

∫
f0(v) d3v

(ω − k · v)2 − ~2k4/(4m2
e)
, (24)

where f0(v) is the equilibrium electronic Wigner func-

tion and ωpe =
√
n0e2/(meε0) is the electron plasma

frequency.
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FIG. 3: The profile of the ion-acoustic speed cs from Eq. (23),
normalized to the classical expression csc, as a function of the
fugacity z = eβµ0 .

The longitudinal response of an electron-ion plasma in
a Fermi-Dirac equilibrium

f0(v) =
A

1 + eβ(ε−µ0)
(25)

has been calculated in [19], where A and µ0 are obtained
from Eq. (13). Including the first order correction from
quantum recoil, the result is

1 =
ω2
pi

ω2
−

ω2
pi

c2sk
2

[
1 (26)

−
me

(
ω2 + ~2k4/(12m2

e)
)

k2κBT

Li−1/2(−eβµ0)

Li1/2(−eβµ0)

]
,

which follows from Eq. (29) of [19], in a different nota-
tion. The first and second terms in the right-hand side
of Eq.(26) are, respectively, the ionic and electronic res-
ponses of the plasma.

For the treatment of low-frequency waves, for simplici-
ty it is sufficient to consider the static electronic response,
so that we set ω ≈ 0 in the last term of Eq. (26). From
inspection, and since we want to retain the first order
quantum correction, this approximation requires ω2 �
~2k4/(12m2

e). Under the long wavelength assumption
k2c2s � ω2

pi and the leading order result ω2 ≈ c2sk
2, it

follows that

12m2
ec

2
s

~2
� k2 �

ω2
pi

c2s
. (27)

Taking into account the ion-acoustic velocity from Eq.
(23), from Eq. (27) one has the necessary condition

β2~2ω2
pi

12
�
(
me

mi

)2
(

Li3/2(−eβµ0)

Li1/2(−eβµ0)

)2

. (28)
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The combined low-frequency and long wavelength re-
quirement (28) is more easily worked out in the dilute
(eβµ0 � 1) and fully degenerate (eβµ0 � 1) cases.
For hydrogen plasma and using the appropriate asymp-
totic expansions of the poly-logarithm functions, one find
n0/T

2 � 3.5 × 1016m−3K−2 in the non-degenerate si-
tuation, and n0 � 4.5×1037m−3 for very dense systems.
It is seen that non-degenerate plasmas satisfy (28) more
easily in denser and colder plasmas, while fully degener-
ate plasmas safely fit the assumptions, except for extreme
densities (e.g neutron star), which would deserve a rela-
tivistic treatment. Otherwise, there would be the need
to retain the full electronic response in Eq.(26). As a
consequence, a somewhat more involved dispersion rela-
tion would be found. In fact, using n0 from Eq. (13), it
can be shown that the necessary condition (28) is safely
attended for all fugacities, as far as T � 109K, which is
reasonable in view of the non-relativistic assumption.

Dropping ω in the electronic response, Eq. (26) con-
siderably simplify, reducing to

1 =
ω2
pi

ω2
−
ω2
pi

c2sk
2

(
1− ~2k2

12meκBT

Li−1/2(−eβµ0)

Li1/2(−eβµ0)

)
. (29)

Solving for the frequency yield

ω2 =
ω2
pic

2
sk

2

ω2
pi +

(
1− β2~2ω2

pe

12

Li−1/2(−eβµ0 )
Li3/2(−eβµ0 )

)
c2sk

2
. (30)

The expression from kinetic theory is valid for wave-
lengths larger than the electron shielding length of the
system. To make a comparison with the result from fluid
theory, it is necessary to expand (30) for small wavenum-
bers,

ω2 = c2sk
2

[
1 +

(
−1 +

β2~2ω2
pe

12

Li−1/2(−eβµ0)

Li3/2(−eβµ0)

)
c2sk

2

ω2
pi

]
+ O(k6) . (31)

Next, expand the fluid theory expression (22) for small
wavenumbers,

ω2 = c2sk
2

[
1 +

(
−1 +

α~2ω2
pi

12memic4s

)
c2sk

2

ω2
pi

]
+O(k6) .

(32)
Equations (31) and (32) are equivalent provided we set

α =
Li3/2(−eβµ0) Li−1/2(−eβµ0)

[Li1/2(−eβµ0)]2
, (33)

which is our ultimate choice. Therefore, to comply with
the results of kinetic theory on quantum ion-acoustic
waves in a three-dimensional Fermi-Dirac equilibrium,
the numerical coefficient in the quantum force has to
be a function of the fugacity. In particular, with z =
exp(βµ0), we have α → 1 for z → 0 and α → 1/3 as

z → ∞. Moreover, as seen in Fig. (4), the coefficient
α is a monotonically decreasing function of the fugacity,
showing that the quantum force becomes less effective in
denser systems. The result α → 1 for non-degenerate
systems agrees with the quantum hydrodynamic model
for semiconductor devices derived in [23], while α→ 1/3
agrees with [31, 32] in the fully degenerate case. On
the other hand, high frequency waves such as quantum
Langmuir waves would be correctly described by a value
α = 3, in order to reproduce the Bohm-Pines [33] dis-
persion relation ω2 = ω2

pe + (3/5) k2v2F + (1/4)~2k4/m2
e,

where vF = (2EF /me)
1/2 is the Fermi velocity.
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FIG. 4: Behavior of the numerical coefficient α in Eq. (33),
as a function of the fugacity z = exp(βµ0).

The detailed account of the collisionless damping of
quantum ion-acoustic waves has been considered in [19],
where the damping rate is shown to be small, as long as
the ion temperature is much smaller than the electron
temperature of the plasma.

IV. NONLINEAR WAVES

Having performed the analysis of linear quantum ion-
acoustic waves, it is worth to consider the nonlinear struc-
tures which are accessible through our hydrodynamic
model.

From now on, it is useful to define the rescaling

x̃ =
ωpix

cs
, t̃ = ωpit , ñe,i =

ne,i
n0

,

ũi =
ui
cs
, Φ =

eφ

mic2s
, (34)

so that the model equations (1)-(4) can be written in a
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normalized form as follows,

∂ñi

∂t̃
+

∂

∂x̃
(ñiũi) = 0 , (35)

∂ũi

∂t̃
+ ũi

∂

∂x̃
ũi = −∂Φ

∂x̃
, (36)

0 =
∂Φ

∂x̃
−

Li1/2(−eβµ0)

Li1/2(−eβµ)

∂ñe
∂x̃

+
H2

2

∂

∂x̃

(
1√
ñe

∂2

∂x̃2

√
ñe

)
, (37)

∂2Φ

∂x̃2
= ñe − ñi , (38)

introducing the quantum parameter H given by

H =
β~ωpe√

3

(
Li−1/2(−eβµ0)

Li3/2(−eβµ0)

)1/2

. (39)

In the dilute or fully degenerate cases one has resp. H ≈
β~ωpe/

√
3 or H ≈ ~ωpe/(2εF ). Moreover, from Eq.(12),

ñe =
Li3/2(−eβµ)

Li3/2(−eβµ0)
. (40)

In the following, for simplicity the tilde will be omitted
in the normalized quantities.

In order to find a nonlinear evolution equation, a
stretching of the independent variables x, t is defined
as follows [6, 12],

ξ = ε1/2(x− V0t) , τ = ε3/2t,

where ε is a small parameter and V0 is the phase velocity
of the wave to be determined later on. The perturbed
quantities can be expanded in powers of ε,

ni = 1 + εni1 + ε2ni2 + . . . ,

ne = 1 + εne1 + ε2ne2 + . . . ,

ui = εui1 + ε2ui2 + . . . ,

Φ = εΦ1 + ε2Φ2 + . . . ,

µ = µ0 + εµ1 + ε2µ2 + . . . (41)

The lowest order equations give

ni1 = ui1 = ne1 = Φ1 , (42)

and

V0 = ±1 , (43)

which is the normalized phase velocity of the ion-acoustic
wave in plasmas with arbitrary degeneracy of electrons.
From now on, we set V0 = 1 without loss of generality.

Now collecting the next higher order terms, we have

∂ni2
∂ξ

=
∂ni1
∂τ

+
∂

∂ξ
(ni1ui1) +

+
∂ui1
∂τ

+ ui1
∂ui1
∂ξ

+
∂Φ2

∂ξ
, (44)

∂ne2
∂ξ

=
∂Φ2

∂ξ
+ αne1

∂ne1
∂ξ

+
H2

4

∂3ne1
∂ξ3

. (45)

Using the next higher order Poisson’s equation together
with Eqs. (42), (44) and (45) yield the KdV equation for
ion-acoustic waves in plasmas with arbitrary degeneracy
of electrons,

∂Φ1

∂τ
+ aΦ1

∂Φ1

∂ξ
+ b

∂3Φ1

∂ξ3
= 0, (46)

where the nonlinear and dispersive coefficients a and b
are resp. defined as

a =
3− α

2
, b =

1

2

(
1− H2

4

)
. (47)

In the fully classical limit (non-degeneracy and no Bohm
potential), one has a = 1, b = 1/2, recovering the KdV
equation for classical ion-acoustic waves [34]. The effect
of arbitrary degeneracy of electrons appears in both the
nonlinear and dispersive coefficients in the KdV equation
(46).

It is easy to derive traveling wave solutions for the
problem. One of them is the one-soliton solution of the
KdV equation (46) given by

Φ1 = D sech2(
η

W
) , (48)

where D = 3u0/a and W =
√

4b/u0 are resp. the
height and width of the soliton. The polarity of the
soliton depends on the sign of D. In the co-moving
frame one has η = ξ − u0τ , where u0 is the speed of
the nonlinear structure. Decaying boundary conditions
in the co-moving system were used. For a given pertur-
bation speed, one conclude that larger degeneracy (larger
a, b) gives a smaller scaled amplitude and a larger scaled
width. This is because it becomes harder to accom-
modate more fermions in a localized wave packet under
strong degeneracy. The transformed coordinate η can be
written as η = ε1/2η̃ where η̃ = x−V t and V = V0 +εu0
is the soliton velocity in the lab frame.

It can be seen from the relation (47) that the disper-
sive coefficient b disappears at H = 2. In principle, the
lack of a dispersive term eventually yields the formation
of a shock. However, actually in this case a dispersive
contribution could be obtained from a higher-order per-
turbation theory, as occurs in the Kawahara equation
[35]. In the present context of quantum ion-acoustic
nonlinear waves, the soliton solution can exist only for
H 6= 2, with a proper balance between dispersion and
nonlinearity. Notice that for H < 2 the soliton veloc-
ity is positive i.e., u0 > 0 (which means V > V0 and
it moves with supersonic speed) and we have a hump
(bright) soliton structure since a > 0 and D > 0. How-
ever, for H > 2 case the dispersive coefficient becomes
negative i.e., b < 0, so that the soliton solution will exist
only if u0 < 0 (i.e., V < V0 soliton moves with subsonic
speed), since the width W should have real values. As
u0 is negative in the H > 2 case, the nonlinearity coeffi-
cient remains positive i.e., a > 0, therefore D < 0 which
gives a dip (or dark) soliton instead of a hump (or bright)
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structure [36]. In brief, the model predicts hump solitons
for H < 2 case and dip solitons for H > 2. Finally, in
the special fine tuning case with H = 2 there is a shock
instead of solitonic solutions, at least within the present
order of perturbation theory.

V. ON BRIGHT AND DARK PROPAGATING
SOLITONS

The qualitative differences of quantum ion-acoustic
soliton propagation for H < 2 or H > 2 deserve a
closer examination about the associated physical condi-
tions. First, the quantum parameter in Eq. (39) can be
re-expressed according to

H2 = − 1

3π

(
me

2πκBT

)1/2
e2

ε0~
Li−1/2(−eβµ0) , (49)

where the equilibrium density in Eq. (13) was employed.
From the last equation, one find that H > 2 occurs for
sufficiently small temperatures, or

κBT <
me

288π3

(
e2

ε0~

)2 [
Li−1/2(−eβµ0)

]2
, (50)

as illustrated in Fig. (5). Low temperature plasmas with
T < 103K are therefore candidates for the peculiar dark
solitons. Starting from z = eβµ0 ≈ 0 the maximal tem-
perature increases until z = 3, T = 1.1 × 103K (cor-
responding to n0 = 3.0 × 1026m−3), when it starts to
decrease.

0 10 20 30 40 50

200

400

600

800

1000

z

THKL

FIG. 5: The temperatures for H > 2 satisfying Eq. (50) are
below the curve, where z = eβµ0 .

As an example, in Figs.(6) and(7) the two classes of
quantum ion-acoustic bright or dark solitons are shown,
following Eq. (48). The bright soliton (H < 2) moves
with supersonic speed while the dark soliton (H > 2)
moves with subsonic speed.
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0.2

0.3

F1

FIG. 6: Hump soliton structure for H < 2 is shown moving
with supersonic speed in lab frame. The soliton hump cor-
responds to T = 105K, z = 5, u0 = 0.1, ε = 0.1 for which
H = 0.64, n0 = 3.5 × 1029m−3, ωpe = 3.3 × 1016s−1, respec-
tively.
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FIG. 7: Dip soliton structure for H > 2 is shown moving with
subsonic speed in lab frame. The soliton dip is obtained at
T = 103K, z = 5, u0 = −0.1, for which H = 2.03, n0 =
3.5× 1026m−3, ωpe = 1.1× 1015s−1, respectively.

On the other hand, it is interesting to examine the
conditions for weak coupling as deduced in the present
theory. Combining the weak coupling condition yielding
the minimal temperature in Eq. (17) with Eq. (49) gives
an upper bound on the quantum diffraction parameter,
or

H2 < H2
M ≡ −

(
3

π

)1/3 Li−1/2(−eβµ0)Li5/2(−eβµ0)

[Li23/2(−eβµ0)]2/3
,

(51)
which is shown in Fig. (8). It follows that large H > 2
values fall within the strongly coupled regime where cou-
pling parameter g for degenerate electrons may become
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FIG. 8: Maximal quantum parameter HM satisfying the weak
coupling assumption, according to Eq. (51), where z = eβµ0 .

near or greater than one.
Nevertheless, considering ion-acoustic waves at least,

a strong coupling between electrons will be not the main
aspect of the dynamics. Although the complete analy-
sis of the strongly coupled plasma regime is beyond the
scope of this work, some conclusions can be found from
the simplest way to introduce non-ideality for electrons,
namely the addition of a dissipation term −ωcollue in
the right-hand side of Eq. (3), where ue is the electron
fluid velocity and ωcoll is the electron-electron collision
frequency. Using the continuity equation for electrons it
is possible to estimate ωne1 ≈ k n0ue1, where ne1 and
ue1 are the first-order perturbations of the electron fluid
density and velocity. Finally with ω ≈ csk one finds that
the dissipation term is negligible with respect to the pres-
sure term provided ω � (me/mi)ωcoll, which is always
satisfied within the inertialess electrons assumption. We
note that according to the Landau expression [37] one
has in the non-degenerate case

ωcoll
ωpe

≈ ln Λ

Λ
, (52)

where Λ ∼ 1/g3/2 is the plasma parameter. In the fully
degenerate case the right-hand side of Eq. (52) needs

to be multiplied by the Pauli blocking factor κBT/εF .
The conclusion is that except for very high g � 1 the
electron-electron coupling can be neglected as long as the
inertialess assumption is valid.

VI. CONCLUSION

The linear and nonlinear ion-acoustic waves in a non-
relativistic quantum plasma with arbitrary degeneracy of
electrons have been investigated. Besides degeneracy, the
quantum diffraction effect of electrons was also included,
in terms of the Bohm potential. The linear dispersion
relation for quantum ion-acoustic waves was found in
terms of a generalized ion-acoustic speed, valid for both
the dilute and dense cases. The numerical factor α in
front of the quantum force in the macroscopic model was
fixed in order to comply with the kinetic theory results.
The corresponding KdV equation was obtained using the
reductive perturbation method. The possible classes of
propagating solitons, namely bright for H < 2 moving
with supersonic speed and dark for H > 2 case moving
with subsonic speed were discussed, where H is a mea-
sure of the strength of quantum diffraction effects arising
from the Bohm potential. To conclude, the derivation
covers both the basic quantum effects in plasmas (aris-
ing resp. from quantum statistics and wave-like behav-
ior of the charge carriers), in both the dilute and dense
regimes. For instance, from Eq. (48) the scaled ampli-
tude of the soliton becomes smaller for larger degener-
acy, with D = 3u0 for α = 1 (non-degenerate case) and
D = 9u0/4 for α = 1/3 (fully degenerate) case. The
results are useful for the understanding of ion-acoustic
wave propagation in an unmagnetized quantum plasma
with arbitrary degeneracy of electrons.
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