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Abstract
We illustrate the fact that linearity is a meaningful symmetry in the sense of Lie

and Noether. The linearity symmetry role in the quadrature of second-order ordinary
differential equations is reviewed, by means of the use of canonical coordinates and
identifying a Wronskian-like conserved quantity as a first-order Lie invariant. The
Jacobi last multiplier associated to two independent linearity symmetries is applied,
in order to derive the Kanai-Caldirola Lagrangian from symmetry principles. In this
context, the linearity symmetry is recognized to be also a Noether one. Extensions
to higher-order linear ordinary differential equations are derived, where the linear-
ity symmetry are shown to be also Lie and Noether symmetries. The corresponding
invariants generalize the traditional Wronskian-like first integrals to higher-order sys-
tems.

Keywords: linearity, Lie and Noether symmetries, Jacobi last multiplier, higher-
order Lagrangian system

1 Introduction
Let us consider the most general second order linear differential equation (LDE), with
independent variable t and dependent one q, put in the standard form

∆2(t, q, q̇, q̈) := q̈ + a(t)q̇ + b(t)q + c(t) = 0 (1)

where the overdot denotes differentiation with respect to t. In classical mechanics, such
an equation describes a driven damped harmonic oscillator with a priori time-dependent
frequency, dissipation rate and excitation. In undergraduate textbooks on mathematics
[1–3], one learns that once a nonzero solution s(t) of the homogeneous equation

∆2h(t, q, q̇, q̈) := q̈ + a(t)q̇ + b(t)q = 0 (2)

is known, the differential equation may be reduced to a first order one in the derivative of
the dependent variable z = q/s(t). The linearity1 of Eq. (1) is the key-ingredient of the

∗raphael.leone@univ-lorraine.fr
†fernando.haas@ufrgs.br
1The adjective ‘linear’ frequently used to designate a differential equation such as (1) is somewhat

regrettable in the inhomogeneous case where c(t) ̸= 0. Although the independent variable q and its
derivatives appear linearly in (1), the solution space is generally affine and it would have been preferable
to speak in terms of affine differential equations. We have chosen to follow the accepted terminology.
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validity of this traditional recipe. However, the introduction of the variable z is commonly
presented as a lucky and hence unsatisfactory ansatz. It overlooks the symmetry origin
of the method of reduction, as was observed by Sophus Lie himself, the father of the
theory of continuous transformation groups. In his classical book entitled Vorlesungen
über Differentialgleichungen mit bekannten infinitesimalen Transformationen [4], he details
some examples of applications of his theory to differential equations for their reduction.
In particular, he treats the case of Eq. (1) and exhibits the symmetry responsible of its
reduction, a symmetry stemming only from the linearity property. Actually, in place of
z, he uses the more convenient variable w = q̇s(t) − qṡ(t) that will be named ‘Wronskian
variable’ in this article2.

Evidently, since the seminal works of Lie, the referred ‘linearity symmetry’ has been
well recognized in the long history concerning the general second order LDE, where it has
been treated mainly as a marginal result. An exception is [7], where the linearity symmetry
is used to the reduction of order and quadrature of the homogeneous second order LDE –
but without connection to Noether invariance. The existence of linear in velocity conserved
quantities for linear time-dependent systems and its connection to invariance principles has
been obtained in the literature [8–14]. Most importantly in our context, the Noetherian
character of the Wronskian has been recognized [15, 16], at least in the case of the time-
dependent harmonic oscillator where a(t) = c(t) = 0 in (1). Generalization to linear in
velocity invariants for arbitrary multidimensional quadratic Hamiltonian and Lagrangian
systems has been also provided [17]. More frequently, there is the emphasis [18] put on the
quadratic invariants of the Ermakov-Lewis class [19–22], also known as Courant-Snyder
invariant in the context of accelerator physics [16,23].

If the above is possibly not an exhaustive list, it is enough for our purposes. In spite
of the referred literature, recent textbooks [1]- [3] still treat the Wronskian conservation
(in the case where a(t) = c(t) = 0) as an accidental fact, not linked to symmetries.
Therefore, it is the purpose of the present article, to focus centrally on the role of the
linearity symmetry in the context of Lie and Noether invariance, specially concerning the
Wronskian type first integral to be discussed in the remaining Sections.

It might be mentioned that we consider only point, or geometric, symmetries. For
instance, Noether herself [24] followed shortly after by Bessel-Hagen [25] has already
formulated the conservation theorem allowing for velocities and higher-order derivatives
dependence in the transformation equations. However, at these early times they have
not investigated the consequences of this extra freedom, as remarked e.g. by Sarlet
and Cantrijn [26]. One could even argue that all conservation laws from regular La-
grangian systems are Noetherian, by direct application of the converse of Noether’s the-
orem. More exactly, the converse of Noether’s theorem [26] provides a recipe for the
determination of an action symmetry, in principle of a dynamical character, associated
to any conserved quantity of the system. For instance, the conservation law of the
Ermakov-Lewis and Laplace-Runge-Lenz invariants are well known to be associated to
Noether symmetries of non-point character [26,27]. To conclude, unless otherwise stated,
our Noether symmetries are assumed to be point symmetries (pourquoi cette hypothèse?).

This work is organized as follows. In Section 2, the Lie point symmetry associated to
the linearity of Eq. (1) is fully discussed. In Section 3 the same symmetry is shown to be
a Noether point symmetry for the celebrated Caldirola-Kanai Lagrangian associated to
Eq. (1). In Section 4, we consider the extension of the linearity symmetry and therefore
the concept of Wronskian to third-order LDEs as well as fourth-order ones derivable from
an action principle. Section 5 is devoted to a complete generalization and finally section 6
shows our conclusions.

2Our notations differ from Lie’s ones. To obtain the latter, make the replacements t → x, q → y,
s(t) → z(x), w → v.

2



2 Linearity as a Lie point symmetry

2.1 The preliminary case of the first order linear differential equations

Before considering the second-order LDE (1), let us first have a look at the first-order one
whose general form is

∆1(t, q, q̇) := q̇ + a(t)q + b(t) = 0. (3)

If s(t) is a nonzero solution of the homogeneous equation

∆1h(t, q, q̇) := q̇ + a(t)q = 0, (4)

then the transformation (t, q) → (t, q + s(t)) leaves ∆1 invariant in the sense that

∆1(t, q + s(t), q̇ + ṡ(t)) = ∆1(t, q, q̇) + ∆1h(t, s(t), ṡ(t)) = ∆1(t, q, q̇).

Alternatively stated, it is a finite symmetry of ∆1. By linearity, the function εs(t) remains
a solution of (4) for any value of a real parameter ε thus the family of transformations

L (ε) : (t, q) −→ (t, q + εs(t)) (5)

is a continuous one-parameter symmetry group of ∆1. A fortiori, it leaves ∆1 invariant
on-shell, i.e. it is a Lie (point) symmetry of Eq. (3). Moreover, the time t is left unaffected
while z = q/s(t) merely undergoes a translation by ε:

z = q

s(t)
−→ q + εs(t)

s(t)
= z + ε.

Hence, (t, z) is a couple of variables for which the continuous transformation reads simply

L (ε) : (t, z) −→ (t, z + ε).

These so-called canonical variables of L (ε) have the great advantage of leaving the deriva-
tives of z unchanged. Let us exploit this property by first expressing ∆1 in terms of the
new variables through

∆′
1(t, z, ż) := ∆1(t, q, q̇) = ∆1(t, s(t)z, s(t)ż + ṡ(t)z).

Equation (3) is equivalent to ∆′
1 = 0 and the invariance under L (ε) reads now

∆′
1(t, z + ε, ż) = ∆′

1(t, z, ż).

This equality means simply that ∆′
1 does not depend on z and that the original LDE (3)

is reduced to an equation in t and ż only. Explicitly:

∆′
1 = s(t)ż + b(t) = 0.

Being linear in ż, this equation is easily integrated to provide the general solution q(t):

q(t) = s(t)
[
C −

∫
b(t)
s(t)

dt

]
= e−

∫
a(t)dt

[
C −

∫
b(t) e

∫
a(t)dtdt

]
, (6)

where C is a constant of integration and where one has specified s(t) to be the obvious
solution exp(−

∫
a(t)dt) of Eq. (4). Hence, thanks to the linearity symmetry, Eq. (3) is

solved by a single quadrature. This fact was seen and discussed by Lie as an application
of his theory to first order differential equations, at the end of chapter 8 in Ref. [4].
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Actually, the most important result regarding Lie’s theory in the realm of first order
differential equations is certainly the association of an integrating factor (also named
Euler’s multiplier) with any Lie point symmetry [5]. In Ref. [4], this association is stated
and made explicit in chapter 6, theorem 8. With our notations, it can be restated as
follows: if a first order differential equation, put in form

T (t, q)q̇ − Q(t, q) = 0, (7)

is invariant under a transformation

(t, q) −→ (t + ε η(t, q), q + ε ξ(t, q))

then it admits as integrating factor

µ(t, q) = 1
T η − Qξ

.

In other words, there exists some function I(t, q) such that

µ(t, q)
[
T (t, q)q̇ − Q(t, q)

]
= İ .

Clearly, I keeps a constant value C along the solutions and the equality I = C is said to
be a first integral of Eq. (7). In the case of the LDE (3), the linearity symmetry (5) gives
rise to the integrating factor 1/s(t) = exp(

∫
a(t)dt) and to the first integral

I(t, q) := q

s(t)
+
∫

b(t)
s(t)

dt = q e
∫

a(t)dt +
∫

b(t) e
∫

a(t)dtdt = C (8)

which amounts to (6). Note that I transforms like z under L (ε). If one had luckily chosen
I instead of z as canonical variable, the reduced equation would have been simply İ = 0.

In conclusion, the linearity symmetry (5) is the source of the well-known integrating
factor exp(

∫
a(t)dt) of Eq. (3). On the other hand, it is worth noting that an homogeneous

LDE such as (2) or (4) is evidently also invariant under a rescaling of q (here, the scale
invariance is a Lie symmetry of the LDE and not merely an invariance of its left-hand side).
However, we will not be concerned with this eventual extra symmetry and will remain
focused on the invariance under the addition of solutions of the associated homogeneous
LDE.

2.2 The case of second order differential equations

Now let us consider the second-order LDE (1) and let s(t) be a nonzero solution of the
homogeneous equation (2). Here again, the continuous transformation

L (ε) : (t, q) −→ (t, q + εs(t))

leaves evidently ∆2 invariant. Exactly for the same reasons as in the previous paragraph,
the expression of (1), in terms of the canonical variables t and z = q/s(t), becomes a first
order LDE in ż. Explicitly:

∆′
2 = s(t)z̈ +

[
a(t)s(t) + 2ṡ(t)

]
ż + c(t).

However, the reduced LDE takes a more simple form if one introduces the ‘Wronskian
variable’

w = q̇s(t) − qṡ(t) = s2(t)ż (9)
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which is also a first order invariant of L (ε). Indeed, it becomes

ẇ + a(t)w + c(t)s(t) = 0.

Applying formula (8) to that first order LDE, one obtains directly the first integral

I(t, q, q̇) :=
(
q̇s(t) − qṡ(t)

)
e
∫

a(t)dt +
∫

c(t)s(t) e
∫

a(t)dt dt = C. (10)

It is by itself an invariant of L (ε). In the homogeneous case where c(t) = 0, Eq. (10)
is nothing else but Abel’s identity in which the exponential factor compensates exactly
the amplitude damping of both q(t) and s(t). Substituting s2(t)ż for w in (10) yields an
expression of ż as a function of t which can easily be integrated to give the general solution
q(t) of (1), videlicet

q(t) = s(t)
{∫ 1

s2(t)

[
C −

∫
c(t)s(t) e

∫
a(t)dt dt

]
e−
∫

a(t)dt dt + C ′
}

,

where C ′ is another constant of integration.
Since the solution space of the homogeneous equation (2) is a two dimensional vec-

tor space, the whole group associated with the linearity symmetry is actually the two-
parameter symmetry group

L (ε1, ε2) : (t, q) −→ (t, q + ε1s1(t) + ε2s2(t)), (11)

where s1(t) and s2(t) are two independent solutions of (2). The knowledge of s1(t) and
s2(t) enables an algebraic resolution of (1) which constitutes an alternative to the usual
method of variation of the parameters. Indeed, they induce respectively two first integrals
I1(t, q, q̇) = C1 and I2(t, q, q̇) = C2 as given by formula (10). They form a Cramer’s system
in q and q̇ from which q(t) can be extracted.

We end this subsection with the couples of first integrals generated by the linearity
symmetry in the two most relevant examples encountered in physics, at the undergraduate
level.

2.2.1 Example 1: the harmonic oscillator

Let us consider the equation of motion of the harmonic oscillator

q̈ + ω2
0q = 0,

where the natural frequency ω0 is a constant. Here, the formal first integral (10) is the
Wronskian itself:

I(t, q, q̇) = q̇s(t) − qṡ(t).

Since two independent solutions of the homogeneous equation (1) are s1(t) = cos(ω0t) and
s2(t) = sin(ω0t), the linearity symmetry generates the two independent first integrals

I1 = q̇ cos(ω0t) + ω0q sin(ω0t) and I2 = q̇ sin(ω0t) − ω0q cos(ω0t).

2.2.2 Example 2: the driven damped harmonic oscillator

Let us now move on to the equation of motion of a damped harmonic oscillator driven by
a sinusoidal excitation force:

q̈ + 2γq̇ + ω2
0q − F cos(ωet) = 0,
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where the natural and excitation frequencies, ω0 and ωe, are constants as well as the
dissipation rate γ and the characteristic force F . The formal first integral is

I(t, q, q̇) =
(
q̇s(t) − qṡ(t)

)
e2γt −F

∫
cos(ωet)s(t) e2γt dt.

Suppose that we are in the underdamped regime in which case s1(t) = cos(ωt) e−γt and
s2(t) = sin(ωt) e−γt are two real independent solutions of the homogeneous equation, where
ω = (ω2

0 − γ2)1/2. The corresponding first integrals are

I1 =
[
q̇ cos(ωt) + q

(
γ cos(ωt) + ω sin(ωt)

)
− F sin((ω + ωe)t + β+)

2
√

(ω + ωe)2 + γ2 − F sin((ω − ωe)t + β−)
2
√

(ω − ωe)2 + γ2

]
eγt,

I2 =
[
q̇ sin(ωt) + q

(
γ sin(ωt) − ω cos(ωt)

)
+ F cos((ω + ωe)t + β+)

2
√

(ω + ωe)2 + γ2 + F cos((ω − ωe)t + β−)
2
√

(ω − ωe)2 + γ2

]
eγt,

where one has introduced the angles

β± = arctan
(

γ

ω ± ωe

)
.

3 Linearity as a Noether point symmetry
The equation of motion (1) is known [28, 29] to be equivalent to the Euler-Lagrange
equation derived from the Lagrangian

L(t, q, q̇) =
(1

2
q̇2 − 1

2
b(t)q2 − c(t)q

)
e
∫

a(t)dt . (12)

A first manner of constructing this Lagrangian is to perform the point transformation
q → Q = exp(

∫
a(t)dt/2)q in Eq. (1). It maps the initial problem onto a problem of a non

dissipative oscillator with amplitude Q governed by the equation

Q̈ +
[
b(t) − 1

2
ȧ(t) − 1

4
a2(t)

]
Q + c(t) e

1
2

∫
a(t)dt = 0

derivable from the standard Lagrangian

L = 1
2

Q̇2 − 1
2

[
b(t) − 1

2
ȧ(t) − 1

4
a2(t)

]
Q2 − c(t) e

1
2

∫
a(t)dt Q. (13)

Then, performing the inverse transformation Q → q in (13) provides

L =
(1

2
q̇2 − 1

2
b(t)q2 − c(t)q

)
e
∫

a(t)dt + d
dt

(1
4

a(t)q2 e
∫

a(t)dt
)

and one has thereby obtained (12) up to a removable total derivative. However, this result
may be derived without any guess, only by the application of the linearity symmetry in
conjunction with the theory of Jacobi multipliers [4,30,31] which generalize Euler’s ones.
It is well-known since the works of Lie [32] that if a second order differential equation

q̈ − F (t, q, q̇) = 0 (14)

possesses two independent Lie point symmetries

(t, q) −→ (t + ε ξi(t, q), q + ε ηi(t, q)) (i = 1, 2)
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then the quantity

M(t, q, q̇) =

∣∣∣∣∣∣∣
1 q̇ F

ξ1 η1 η̇1 − q̇ξ̇1
ξ2 η2 η̇2 − q̇ξ̇2

∣∣∣∣∣∣∣
−1

(15)

is such that
∂

∂q̇
(MF ) + ∂

∂q
(Mq̇) + ∂M

∂t
= 0.

It is a so-called Jacobi last multiplier of Eq. (14), see also Refs. [4] (chap. 15, § 5,
theorem 32) and [31]. What is important for our purpose is that, beyond their profound
signification, Jacobi last multipliers bring solutions to the inverse Lagrange problem in
the case of a single coordinate. Indeed, the existence of a last multiplier M brings a
Lagrangian L, constrained by [31]

∂2L

∂q̇2 = M,

whose Euler-Lagrange equation amounts to Eq. (14). Using the linearity symmetries
generated by s1(t) and s2(t), Eq. (1) admits the Jacobi last multiplier

M =
∣∣∣∣∣s1(t) ṡ1(t)
s2(t) ṡ2(t)

∣∣∣∣∣
−1

= 1
s1(t)ṡ2(t) − ṡ1(t)s2(t)

= K e
∫

a(t)dt,

thanks to Abel’s identity. Here, K is a nonzero constant without any signification depend-
ing on the choices of s1(t) and s2(t). It will be set to 1. Interestingly enough, the explicit
forms of s1(t) and s2(t) are unnecessary to infer the last multiplier, the knowledge of their
existence suffices. Then, the Lagrangian has a priori the form

L(t, q, q̇) =
(1

2
q̇2 + f1(t, q)q̇ + f0(t, q)

)
e
∫

a(t)dt .

However, in a Lagrangian, one can always remove a term linear in q̇ by a gauge transforma-
tion, that is, by adding the total derivative of a suitable function of (t, q). Thus, without
lost in generality, one can make the gauge choice f1(t, q) = 0 yielding the Euler-Lagrange
equation

E(L) = ∂L

∂q
− d

dt

∂L

∂q̇
= −

(
q̈ + a(t)q̇ − ∂f0

∂q
(t, q)

)
e
∫

a(t)dt .

It is equivalent to (1) if

f0(t, q) = −1
2

b(t)q2 − c(t)q

and one has re-obtained the Lagrangian3 (12). Under the transformation (5), it becomes

L(t, q + εs(t), q̇ + εṡ(t)) = L(t, q, q̇) + ε
(
q̇ṡ(t) −

[
b(t)q + c(t)

]
s(t)

)
e
∫

a(t)dt +O(ε2).

3We point out that, whatever the potential V (q, t) be, a dynamic equation q̈+a(t)q̇+∂qV (q, t) is always
deducible from the Caldirola-Kanai Lagrangian

L =
(1

2 q̇2 − V (q, t)
)

e
∫

a(t)dt
.

This is because M = e
∫

a(t)dt is actually an universal last multiplier of the dynamic equation. However,
it is a priori not a consequence of any symmetry (one can find in Ref. [33] the list of potentials for which
the equation of motion admits a point symmetry). Interestingly, for linear equations, the existence of the
last multiplier ceases to be ‘accidental’.
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Hence, using the fact that s(t) is a solution of (2), one has

δL = L(t, q + εs(t), q̇ + εṡ(t)) − L(t, q, q̇) = ε
df

dt
+ O(ε2), (16)

where

f(t, q) = qṡ(t) e
∫

a(t)dt −
∫

c(t)s(t) e
∫

a(t)dt dt.

Since L merely undergoes a gauge transformation under (5), the later is a Noether point
symmetry. On the other hand, one has independently on the form of L:

L(t, q + εs(t), q̇ + εṡ(t)) = L(t, q, q̇) + ε

[
s(t)∂L

∂q
+ ṡ(t)∂L

∂q̇

]
+ O(ε2)

= L(t, q, q̇) + ε

[
s(t)E(L) + d

dt

(
s(t)∂L

∂q̇

)]
+ O(ε2). (17)

Equations (16) and (17) give

d
dt

[
s(t)∂L

∂q̇
− f(t, q)

]
= −s(t)E(L).

Along the solutions q(t), the right-hand side vanishes so the symmetry generates the
conservation of the expression in brackets, namely the Noether invariant which coincide
obviously with Lie’s one (10).

4 Higher-order linear differential equations

4.1 Linearity symmetry of third-order linear differential equations

One can wonder about the extension of the linearity symmetry and the associated Wrons-
kian-type conservation law to higher-order LDEs. For this purpose and for the sake of
illustration, we now consider a third order LDE

∆3(t, q, q̇, q̈,
...
q ) = ...

q + a(t)q̈ + b(t)q̇ + c(t)q + d(t) = 0. (18)

Let s1(t) be a nonzero solution of the homogeneous equation

∆3h(t, q, q̇, q̈,
...
q ) = ...

q + a(t)q̈ + b(t)q̇ + c(t)q = 0. (19)

Yet again, the transformation

L1(ε) : (t, q) → (t, q + εs1(t))

is a symmetry of ∆3. Introducing the canonical variable z1 = q/s1(t), Eq. (18) is reduced
to a second order LDE

∆′
3(t, ż1, z̈1,

...
z1) = ∆3(t, q, q̇, q̈,

...
q ) = 0

whose dependent variable is the invariant

ż1 = d
dt

(
q

s1(t)

)
= 1

s2
1(t)

∣∣∣∣∣s1(t) q
ṡ1(t) q̇

∣∣∣∣∣
of L1(ε). Now, let s2(t) be another independent solution of (19). By construction, ∆′

3
inherits the invariance under the symmetry group

L2(ε) : (t, q) → (t, q + εs2(t)).
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The action of L2(ε) on ż1 is simply

ż1 −→ 1
s2

1(t)

∣∣∣∣∣s1(t) q + εs2(t)
ṡ1(t) q̇ + εṡ2(t)

∣∣∣∣∣ = ż1 + ε

s2
1(t)

∣∣∣∣∣s1(t) s2(t)
ṡ1(t) ṡ2(t)

∣∣∣∣∣ .
Hence, L2(ε) merely translates by ε the variable

z2 = s2
1(t)ż1∣∣∣∣∣s1(t) s2(t)

ṡ1(t) ṡ2(t)

∣∣∣∣∣
=

∣∣∣∣∣s1(t) q
ṡ1(t) q̇

∣∣∣∣∣∣∣∣∣∣s1(t) s2(t)
ṡ1(t) ṡ2(t)

∣∣∣∣∣
and one obtains a first order LDE in

ż2 = s1(t)w∣∣∣∣∣s1(t) s2(t)
ṡ1(t) ṡ2(t)

∣∣∣∣∣
2 where w =

∣∣∣∣∣∣∣
s1(t) s2(t) q
ṡ1(t) ṡ2(t) q̇
s̈1(t) s̈2(t) q̈

∣∣∣∣∣∣∣ ,

or in the Wronsrkian variable w itself. It may be deduced directly by deriving w. Since
each row is the derivative of the preceding, one has

ẇ =

∣∣∣∣∣∣∣
s1(t) s2(t) q
ṡ1(t) ṡ2(t) q̇
...
s1(t) ...

s2(t) ...
q

∣∣∣∣∣∣∣ = −a(t)w − d(t)
∣∣∣∣∣s1(t) s2(t)
ṡ1(t) ṡ2(t)

∣∣∣∣∣ .
It is easily integrated to yield the first integral

I3(t, q, q̇, q̈) :=

∣∣∣∣∣∣∣
s1(t) s2(t) q
ṡ1(t) ṡ2(t) q̇
s̈1(t) s̈2(t) q̈

∣∣∣∣∣∣∣ e
∫

a(t)dt +
∫

d(t)
∣∣∣∣∣s1(t) s2(t)
ṡ1(t) ṡ2(t)

∣∣∣∣∣ e∫ a(t)dtdt = C3 (20)

which, like ż2 or w, is a simultaneous Lie invariant of L1(ε) and L2(ε). The last equality
may be integrated in z2, then in z1 to provide the general expression of q(t). However,
things becomes easier when one considers the whole linearity symmetry group through the
introduction of a third independent solution s3(t) of (19). Then, permuting cyclically the
indices 1, 2, 3 in (20) yields two other first integrals I1 = C1 and I2 = C2. The three first
integrals define a Cramer system in q, q̇, q̈ from which q(t) can be extracted.

4.2 Linearity symmetries of third-order Lagrangians

We now consider a Lagrangian depending also on the acceleration, so that L = L(t, q, q̇, q̈).
In this case [34,35] the Euler-Lagrange equation reads

E(L) := ∂L

∂q
− d

dt

∂L

∂q̇
+ d2

dt2
∂L

∂q̈
= 0 .

It is certainly linear if the Lagrangian has the form

L(t, q, q̇, q̈) = 1
2

A(t) q̈2 + 1
2

B(t) q̇2 + 1
2

C(t) q2 − D(t) q, (21)

where A, B, C and D are arbitrary functions of time. Notice that further monomials in
qq̈, q̇q̈, qq̇, q̈, q̇ would be superfluous. Indeed, they can be accommodated in the above
picture by repeating Leibniz’ product rule as many time as necessary and taking into
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account that total derivatives do not contribute to the Euler-Lagrange equations. For
instance, one has

E(t)qq̈ = d
dt

(
E(t)qq̇

)
− Ė(t)qq̇ − E(t)q̇2 = d

dt

(
E(t)qq̇ − 1

2
Ė(t)q2

)
+ 1

2
Ë(t)q2 − E(t)q̇2,

and the relevant terms of the right-hand side are seen to fit with (21). The Euler-Lagrange
equation for (21) reads

A(t)....q + 2Ȧ(t)...q +
[
Ä(t) − B(t)

]
q̈ − Ḃ(t)q̇ + C(t)q − D(t) = 0.

Notice that not all fourth-order LDE fulfils the above equation, so that the variational
principle imposes some restriction. We are not aware of a suitable Lagrangian for the
general (time-dependent) fourth-order LDE. In addition, observe that for A(t) = 0 one
goes directly from a fourth-order to a second-order equation in this case.

Now, let s(t) be a nonzero solution of the associated homogeneous equation:

A(t)....q + 2Ȧ(t)...q +
[
Ä(t) − B(t)

]
q̈ − Ḃ(t)q̇ + C(t)q = 0.

Using this property, one verifies that the transformation q → q + εs(t) is a Noether point
symmetry of L since

δL = L(t, q + εs(t), q̇ + εṡ(t), q̈ + εs̈(t)) − L(t, q, q̇, q̈) = ε
df

dt
+ O(ε2), (22)

with

f(t, q, q̇) = A(t)s̈(t)q̇ − A(t)...s(t)q − Ȧ(t)s̈(t)q + B(t)ṡ(t)q −
∫

D(t)s(t)dt .

However, independently of the form of L, the action of the transformation is generally

δL = ε

[
s(t)∂L

∂q
+ ṡ(t)∂L

∂q̇
+ s̈(t)∂L

∂q̈

]
+ O(ε2)

= ε

[
s(t)E(L) + d

dt

(
ṡ(t)∂L

∂q̈
− s(t) d

dt

∂L

∂q̈
+ s(t)∂L

∂q̇

)]
+ O(ε2). (23)

Then, one concludes from (22) and (23) the Noether invariant

I(t, q, q̇, q̈,
...
q ) = ṡ(t)∂L

∂q̈
− s(t) d

dt

∂L

∂q̈
+ s(t)∂L

∂q̇
− f(t, q, q̇)

= A(t)
(
ṡ(t)q̈ − s̈(t)q̇ + ...

s(t)q − s(t)...q
)

+ Ȧ(t)
(
s̈(t)q − s(t)q̈

)
+ B(t)

(
s(t)q̇ − ṡ(t)q

)
+
∫

D(t)s(t)dt. (24)

5 General higher-order linear differential equations

5.1 Lie symmetry approach

The reasoning about the Lie linearity symmetry remains evidently valid for an LDE of
any order

∆n(t, q, q(1), . . . , q(n)) = q(n) + an−1(t)q(n−1) + · · · + a1(t)q(1) + a0(t)q + c(t) = 0, (25)

where q(k) designates the k-th derivative of q. Let s1(t), . . . , sn−1(t) be independent solu-
tions of the homogeneous equation

∆nh(t, q, q(1), . . . , q(n)) = q(n) + an−1(t)q(n−1) + · · · + a1(t)q(1) + a0(t)q = 0. (26)
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Using successively the n − 1 linearity symmetries, one decreases the order of the LDE
one by one until a first-order LDE. At each step, the intermediate LDE of order n − k is
expressed in terms of the derivative of the canonical variable

zk = wk

Dk(t)

where one has introduced the kth-order Wronskian variable

wk =

∣∣∣∣∣∣∣∣∣∣
s1(t) s2(t) . . . sk−1(t) q
ṡ1(t) ṡ2(t) . . . ṡk−1(t) q̇

...
...

...
...

s
(k−1)
1 (t) s

(k−1)
2 (t) . . . s

(k−1)
k−1 (t) q(k−1)

∣∣∣∣∣∣∣∣∣∣
and where Dk(t) is the Wronskian obtained from wk by substituting q for sk(t) along the
last column. Differentiating wn row by row produces the first order LDE

ẇn + an−1(t)wn + c(t)Dn−1(t) = 0. (27)

Once integrated, it yields the first integral

I(t, q, q(1), . . . , q(n−1)) = wn e
∫

an−1(t)dt +
∫

c(t)Dn−1(t) e
∫

an−1(t)dt = C.

Solving (27) for wn as in paragraph 2.1 gives zn(t). Then, thanks to the relation

żk = Dk−1(t)Dk+1(t)
Dk(t)2 zk+1 ,

n−1 successive quadratures allow us to obtain z1(t) and to deduce the general solution q(t).
Alternatively, if one knows a last independent solution sn(t) of (26), one can construct a
Cramer system of n first integrals from which one extracts q(t).

5.2 Noether symmetry approach

An immediate generalisation of the Lagrangian (12) to the n-th order with linear Euler-
Lagrange equation

E(L) =
n∑

k=0
(−1)k dk

dtk

∂L

∂q(k)

is a priori of the form

L = 1
2

n∑
i,j=0

aij(t) q(i)q(j) +
n∑

i=0
bi(t)q(i).

However, it is a simple task to show, by induction on the non-negative integer j, that
any term of the form A(t)q(i) can be decomposed as a sum of a term B(t)q and a total
derivative. In the same manner, any term of the form A(t)q(i)q(i+j) can be decomposed
as a sum of quadratic terms Bk(t)(q(k))2 plus a total derivative. All the total derivatives
in L can be gauged out and it is sufficient to restrict ourself to a Lagrangian

L = 1
2

n∑
k=0

αk(t)(q(k))2 − β(t)q.
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The Euler-Lagrange equation of order 2n is

E(L) =
n∑

k=0
(−1)k dk

dtk

(
αk(t)q(k)

)
− β(t) = 0.

Let s(t) be a solution of the homogeneous equation, i.e. a function such that

n∑
k=0

(−1)k dk

dtk

(
αk(t)s(k)(t)

)
= α0s(t) +

n∑
k=1

(−1)k dk

dtk

(
αk(t)s(k)(t)

)
= 0. (28)

The transformation q → q +εs(t) affects the derivatives according to q(k) → q(k) +εs(k)(t).
To the first order in ε, it produces the following variation of the Lagrangian:

δL = εX[n](L) = ε

[
q α0(t)s(t) +

n∑
k=1

q(k)αk(t)s(k)(t) − β(t)s(t)
]
.

Exploiting Eq. (28), the variation reads

δL = ε

[
−

n∑
k=1

(−1)kq
dk

dtk

(
αk(t)s(k)(t)

)
+

n∑
k=1

q(k)αk(t)s(k)(t) − β(t)s(t)
]
.

Then, using the identity

u(t)v(k)(t) = (−1)ku(k)(t)v(t) + d
dt

(
k−1∑
j=0

(−1)ju(j)(t)v(k−j−1)(t)
)

, (29)

one obtains

δL = ε
df

dt
(30)

with

f(t, q, q(1), . . . , q(n−1)) = −
n∑

k=1
(−1)k

k−1∑
j=0

(−1)jq(j) dk−j−1

dtk−j−1

(
αk(t)s(k)(t)

)
−
∫

β(t)s(t)dt.

Hence, the transformation is definitely a Noether symmetry of L. On the other hand, one
has

δL = ε
n∑

k=0
s(k)(t) ∂L

∂q(k) = ε

{
s(t)E(L) + d

dt

[
n∑

k=1

k−1∑
j=0

(−1)js(k−j−1)(t) dj

dtj

(
αk(t)q(k)(t)

)]}
,

where use has been made of (29). This expression together with (30) yield the first integral
of order 2n − 1

I =
n∑

k=1

k−1∑
j=0

(−1)j

[
s(k−j−1)(t) dj

dtj

(
αk(t)q(k)(t)

)
+ (−1)kq(j) dk−j−1

dtk−j−1

(
αk(t)s(k)(t)

)]

+
∫

β(t)s(t)dt.
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6 Conclusions
In this work, we started with a brief review of the role of the linearity symmetry for
linear second-order ordinary differential equations. The corresponding Lie symmetry
group canonical variables allow the quadrature of the system and the identification of a
Wronskian-like first-order Lie invariant. Later the variational approach is pursued, where
the well-known Kanai-Caldirola Lagrangian is recognized as a consequence of Jacobi last
multiplier associated to two independent linearity symmetries. The linearity symmetry is
shown to be a Noether symmetry, in accordance with previous findings [15, 16]. Finally,
extension to linear ordinary differential equations of degree 2n, where n ≥ 2, is obtained,
where the linearity symmetry is shown to be a Noether symmetry. The corresponding first-
integrals are in this context higher-order generalizations of the traditional Wronskian-like
quantities. It is hoped that the present review and generalized results will disseminate the
invariance principles associated to linearity and Wronskian-like-conservation laws.
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