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Abstract

A collisional trapped non-neutral plasma is described by an hydrodynamical model in one-

dimensional geometry. For suitable initial conditions and velocity field, the Lagrangian variables

method reduces the pressure dominated problem to a damped autonomous Pinney equation, rep-

resenting a dissipative nonlinear oscillator with an inverse cubic force. An accurate approximate

analytic solution derived from the Kuzmak-Luke perturbation theory is applied, allowing the assess-

ment of the fully nonlinear dynamics. On the other hand, in the cold plasma case the Lagrangian

variables approach allows the derivation of exact damped nonlinear oscillations. The conditions

for the applicability of the hot, pressure dominated, or the cold gas assumptions are derived.

PACS numbers: 02.30.Hq, 52.25.Fp, 52.27.Jp, 52.35.Mw

Keywords: Trapped electron gas, arbitrary amplitude solution, Lagrangian variables, Pinney equation,

collisional effects.
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I. INTRODUCTION

The analysis of arbitrary amplitude structures in charged particle systems such as plasmas

is a traditional research field [1]–[4] with an ongoing interest [5]–[7]. However, in most

cases the previous literature regarding nonlinear solutions in fluid-plasma systems restrict

to the approximation of a cold, collisionless system, which can be a drawback in view of

realistic applications. The present work aims to remove these constraints, considering a

trapped electron gas (a non-neutral plasma) possibly taking into account thermal effects

and dissipation due to a collisional drag.

We will consider nonlinear structures derived by means of the Lagrangian coordinates

method [1]–[3], applied to an hydrodynamical model with adiabatic equation of state, which

is appropriate to fast processes where heat transfer does not take place. Lagrangian variables

are recognized as an effective method in fluid problems and have been recently applied

e.g. for the derivation of nonlinear waves in one-dimensional degenerate electron gases

[8]. In the hydrodynamic model, the repulsive collective field due to the electron gas and

the pressure term tend to produce expansion, while an external harmonic trap provides

confinement. Two basic situations will be considered, according to the prevalence of thermal

or Coulomb repulsion effects. Thanks to the more complete formulation of the original

model equations, the precise conditions for the dominant effects can be evaluated in terms

of physical parameters. This fills a gap in the literature, where e.g. the exact conditions for

the cold plasma assumption are seldom evaluated.

Moreover, it will be shown that the presence of an external trap is a necessary condition

for the existence of thermally dominated regime. For instance, such a possibility can not

take place in an one-component plasma with fixed ionic background, since in this case the

expansive rôle of the pressure, in equilibrium with the ions attraction, would be of the same

order of the Coulomb repulsion (see Section III for more details). On the other hand, the

external confinement allows the reduction of the complete problem to the solution of the

Pinney equation [9], which is endemic in nonlinear physics. Pinney’s equation applies to the

stability analysis of beams in accelerators [10, 11], cosmologic models [12, 13], propagation of

gravitational waves [14], rotating shallow water waves [15], Bose-Einstein condensates [16],

the quantum Buneman instability [17] and many more.

Due to the presence of collisional drag, our version of the Pinney equation contains a
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damping term, so that it will become a dissipative Pinney equation [18], as apparent from

Eq. (17) below. The damped Pinney equation is attracting much attention recently, in view

of applications for dissipative quantum mechanics [19, 20], barotropic Friedman-Robertson-

Walker universes with Chiellini damping [21], dissipative Milne-Pinney systems [22] and

time-dependent non-commutative quantum mechanics [23]. In addition, although our treat-

ment is restricted to systems with an one-dimensional (1D) geometry as a starting point,

which is a frequently adopted choice [5, 24], it should be regarded as a general framework to

be followed in more complex situations. For instance, it can be readily adapted to nonlinear

spherical surface waves [25] or plasmas with a cylindrical symmetry [26], among other pos-

sibilities [27]. The 1D geometry is relevant for real trapped gases, such as in the two-stream

instability in quasi-1D Bose-Einstein condensates [28], or Pierce diode plasmas [29, 30].

Although the present treatment has some similarity with bounded plasmas where rigid

or virtual walls exist, demanding boundary conditions at the interfaces, here due to the

gaseous nature, as well as due to the external confinement and electrostatic repulsion, the

electron gas boundaries are self-consistently determined. For instance, in a bounded plasma

one can have a velocity field u(x, t) such that u(±d, t) = 0, with interfaces at x = ±d.

Such a situation has been treated in [24, 31, 32]. In our case, the starting model is exactly

the same of [33] for a non-neutral plasma in a trap, except from the equation of state and

because we also allow for damping. For a finite plasma, the boundary becomes defined in

terms of the dynamics of the moving fluid, as described in [34]. Trapped clouds of identical

charges have been treated in many contexts, like for the breathing mode of a quantum

electron gas [35]. Experiments on such harmonically confined gases frequently use magneto-

optical confinement techniques, tuned so as to obtain not only three dimensional but also

quasi -two- or quasi-one-dimensional configurations [36]. We stress that in such systems by

definition there is not the need for a positive feedback between “in” and “out”, as is the

case of electronic devices as the Pierce diode.

This work is organized as follows. Section II introduces the basic set of hydrodynamic

equations and the transformation to Lagrangian variables. Section III develops the arbi-

trary amplitude full solution when thermal effects are dominant and provides the precise

applicability conditions of the solution in terms of the relevant physical parameters. Section

IV performs the same job of Section III, but in the opposite case where Coulomb repulsion

dominates thermal effects (cold plasma assumption). Section V shows sample applications of
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the results in the case of prevalent self-consistent fields, for a few initial conditions. Section

VI is reserved to the conclusions.

II. BASIC MODEL AND LAGRANGIAN VARIABLES METHOD

In a slab geometry where the relevant physics develops in 1D space, the non-neutral

plasma can be described by the following standard hydrodynamic equations,

∂n

∂t
+

∂

∂x
(nu) = 0 , (1)

∂u

∂t
+ u

∂u

∂x
= − 1

mn

∂P

∂x
− eE

m
− ω2x− ν u , (2)

∂E

∂x
= −e n

ε0
. (3)

By definiteness, the system is composed by electrons (charge −e, mass m) with a number

density n, fluid velocity u and pressure P . Moreover, E is the internal electric field, ε0 is

the vacuum permittivity and a drag term with collision frequency ν is also included. Con-

finement is provided by an external harmonic field with angular frequency ω. As remarked

in [33], the trapping potential can be provided by an homogeneous ionic background with

number density ni, in which case ω2 = nie
2/(mε0), supposing rapid oscillations so that ions

can be regarded as motionless. In this context E by definition is the electric field due to

electrons only. Other popular particle confinement techniques are the radio-frequency Paul

trap [37] and the Penning trap [38]. In view of the fast processes assumption, heat trans-

port can be neglected. In this context, it can be assumed an adiabatic equation of state

P = n0κBT (n/n0)
γ, where κBT is a reference thermal energy and γ is the adiabatic index.

For longitudinal waves it is adequate to chose γ = 3, corresponding to 1D compression.

Weak collisionality is assumed, allowing wave propagation to remain essentially 1D.

In order to derive arbitrary-amplitude solutions for the system (1)-(3), we introduce

Lagrangian coordinates (ξ, τ) given [1, 2] by

ξ = x−
∫ τ

0

u(ξ, τ ′) dτ ′ , τ = t , (4)

such that
∂

∂τ
=

∂

∂t
+ u

∂

∂x
,

∂

∂ξ
=

(
1 +

∫ τ

0

∂u(ξ, τ ′)

∂ξ
dτ ′

)
∂

∂x
. (5)

The continuity equation (1) is then converted into

∂

∂τ

[(
1 +

∫ τ

0

∂u(ξ, τ ′)

∂ξ
dτ ′

)
n

]
= 0 , (6)
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with solution

n = n(ξ, 0)

(
1 +

∫ τ

0

∂u(ξ, τ ′)

∂ξ
dτ ′

)−1

, (7)

where n(ξ, 0) is the electrons number density at τ = 0.

The Gauss law (Eq. (3)) in transformed coordinates reads

∂E

∂ξ
= − e

ε0
n(ξ, 0) , (8)

with solution

E = − e

ε0

∫
n(ξ, 0) dξ + E0(τ) , (9)

where E0(τ) is at this stage an arbitrary function of the new time parameter. Physically

E0(τ) would be associated with an additional external field, besides the harmonic confine-

ment, so we will set E0(τ) = 0 in the continuation.

The only remaining equation to be solved is the momentum transport equation (2), which

becomes

∂u

∂τ
= − 3κBT

2m

(
1 +

∫ τ

0

∂u(ξ, τ ′)

∂ξ
dτ ′

)−1 ∂

∂ξ

[( n
n0

)2]
− ω2

(
ξ +

∫ τ

0

u(ξ, τ ′) dτ ′
)
+
ω2
p

n0

∫
n(ξ, 0) dξ − ν u , (10)

where ωp = [n0e
2/(mε0)]

1/2 is the plasma frequency, for a reference number density n0.

There are two manifestly repulsive contributions in Eq. (10). One of them is the pressure

term proportional to κBT and the another one is due to the electrons self-consistent field,

proportional to ω2
p/n0. These repulsive effects are counterbalanced by the second term in the

right-hand side of Eq. (10), due to the harmonic confinement. In the following, the solutions

of Eq. (10) will be analyzed according to the strengths of the thermal and self-consistent

field effects.

III. DOMINATING THERMAL EFFECTS

Equation (10) is too difficult to be analytically solved without further assumptions. As

a working hypothesis, in this Section we consider sufficiently simple, linear velocity fields

given by

u = ξ/T (τ) + u0(τ) , (11)
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where T (τ) and u0(τ) are functions to be determined. From Eq. (7), we get

n = n(ξ, 0)/ρ(τ) , (12)

where

ρ = ρ(τ) = 1 +

∫ τ

0

dτ ′

T (τ ′)
. (13)

Inserting u from Eq. (11) and n from Eq. (12) into Eq. (10), the result is(
ρ̈+ νρ̇+ ω2ρ

)
ρ3ξ +

(
u̇0 + νu0 + ω2

∫ τ

0

u0(τ
′) dτ ′

)
ρ3 =

− 3κBT

2m

∂

∂ξ

[(n(ξ, 0)
n0

)2]
+
ω2
p ρ

3

n0

∫
n(ξ, 0) dξ (14)

where a dot denotes derivative with respect to τ . Deriving all terms in the Eq. (14) twice

with respect to ξ and once with respect to τ gives (ω2
p/n0)× d(ρ3)/dτ × dn(ξ, 0)/dξ = 0, a

condition which is due to the electrons self-consistent repulsion term alone. Such a constraint

can not be satisfied in nontrivial situations where neither ρ(τ) or n(ξ, 0) are constants.

Hence, the only meaningful possibility occurs when the electrons repulsion can be neglected

in comparison with the thermal effects.

Disregarding the electrons collective field in Eq. (14), for consistency still one needs

to impose the pressure contribution as a linear function of ξ, in the same manner as the

left-hand side of the equation is. By inspection, this requirement implies

n(ξ, 0) = n0

√
1 + c1

ξ

ξ0
−
(
ξ

ξ0

)2

, |ξ| ≤ ξ0 , (15)

where c1 is a dimensionless numerical constant and ξ0 > 0 is a reference position. Outside

the bulk of the electron gas, where |ξ| ≥ ξ0, we set n(ξ, 0) = 0. Since the more interesting

physics takes place inside the electrons cloud, we will mainly discuss the problem for |ξ| ≤ ξ0.

Without loss of generality, in Eq. (15) it was chosen n(0, 0) = n0, which becomes the

definition of n0. In addition, for simplicity we shall consider only symmetric equilibrium

densities, so that c1 ≡ 0.

Taking into account Eq. (15), the term independent not depending on ξ gives

u̇0 + νu0 + ω2

∫ τ

0

u0(τ
′) dτ ′ = 0 . (16)

It is apparent that u0 will just execute linear transient oscillations. For simplicity, it will be

set u0 = 0 in what follows.
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FIG. 1: Initial number density from Eq. (15) and c1 = 0.

On the other hand, the term proportional to ξ in Eq. (14) provides

ρ̈+ νρ̇+ ω2ρ =
3κBT

mξ20

1

ρ3
. (17)

Equation (17) is an autonomous damped, or dissipative Pinney equation [18]. The undamped

case (ν = 0) was solved by Pinney [9], including a time-dependent frequency ω = ω(t), in

terms of the linearly independent solutions of the associated Hill equation. Similar nonlinear

equations were obtained in non-uniform non-neutral plasmas [33], from a moments method

approach, without drag and for a pressure equation explicitly depending on the position.

By inspection it is possible to identify the equilibrium solution ρ = ρeq where ρ̇ = ρ̈ = 0,

given by

ρeq =

(
3κBT

mω2ξ20

)1/4

. (18)

The existence of the (stable) equilibrium is due to the sign of the inverse cubic term, which

in turn comes from the concavity of the number density in Eq. (15). Alternatively, one can

write the conservative part of Eq. (17) in terms of a potential V = V (ρ), defined by

V =
mω2ρ2

2
+

3κBT

2mξ20

1

ρ2
, (19)

so that

ρ̈ = −∂V
∂ρ

− νρ̇ . (20)
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Evidently, the repulsive term from Eq. (19) prevents collapse to the origin, as depicted in

Fig. 2.

0 Ρeq 1

t = 02 A

Ρ

V

FIG. 2: Effective potential from Eq. (19), showing also a representative trajectory such

that ρ(0) = 1 > ρeq and with initial amplitude ≈ A > 0.

It happens that the damped Pinney equation (17) admits an accurate approximate solu-

tion, derived from Kuzmak-Luke perturbation theory [39, 40], which is an appropriate tool

for weakly damped, nonlinear oscillator problems [41]. From Eq. (26) of [18], the solution

reads

ρ2 = ρ2eq + 2A2e−ντ + 2Ae−ντ/2
(
ρ2eq + A2e−ντ

)1/2
cos (2ω(τ − τ0)) , (21)

where A, τ0 are integration constants. As detailed in [18], the weak damping assumption

should be valid for the accuracy of Eq. (21). In the undamped case (ν = 0), Eq. (21)

shows an exact oscillatory solutions in the interval I = {ρ > 0 |
√
ρ2eq + A2 − |A| ≤ ρ ≤√

ρ2eq + A2+|A|}, with the parameter |A| playing the rôle of an initial amplitude, as depicted

in Fig. 2. Moreover, since ν/ω ≪ 1, during one oscillation period τ = π/ω the quantity

|A| exp(−ντ/2) does not change very much and plays the rôle of a slowly varying time-

dependent amplitude.

From Eq. (13) one has ρ(0) = 1, implying

cos(2ωτ0) =
1− ρ2eq − 2A2

2A (ρ2eq + A2)1/2
, (22)
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which makes sense if and only if A2 ≥ (1 − ρ2eq)
2/4, or equivalently ρ(0) = 1 ∈ I, to

avoid cos2(2ωτ0) > 1. For any A satisfying the requirement, by construction the solution

will remain regular and non-explosive, not producing multistream flow [1]. This is due to

the repulsive inverse cubic term in the damped Pinney equation, which prevents ρ → 0.

Besides, taking into account Eq. (22), the parameter A is obviously related to ρ̇(0), but in

an awkward algebraic way wish we refrain to exhibit.

As an example, we take realistic parameters for a trapped electron gas [42], namely n0 =

1010 m−3, κBT = 1 eV, ξ0 = 5 cm, ω = 5ωp = 25 ν, together with ωp = 5, 64MHz, ρeq = 0.72.

The numerical simulation of Eq. (17) and the approximate solution from Eq. (21) yield

almost identical results in this case, shown in Fig. 3.

Ρeq

0 50 100 150
ΩΤ

0.2

0.4

0.6

0.8

1.0

Ρ

FIG. 3: Auxiliary function ρ as a function of time, from Eq. (21), approaching ρeq = 0.72.

Parameters: n0 = 1010 m−3, κBT = 1 eV, ξ0 = 5 cm, ω = 5ωp = 25 ν. Initial conditions:

ρ(0) = 1, ρ̇(0) = 0. Correspondingly, A = 0.24, ωτ0 = 0.01.

To complete the solution procedure, the electric field found from Eq. (9) and shown in

Fig. 4 is

E = −n0eξ0
2ε0

 ξ

ξ0

√
1−

(
ξ

ξ0

)2

+ arcsin

(
ξ

ξ0

) , (23)

which is also symmetric with respect to the origin ξ = 0.
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FIG. 4: Electric field from Eq. (23), normalized to E0 = mω2
p ξ0/(2 e).

To summarize, an accurate nonlinear solution of the full hydrodynamic problem was found

in terms of Lagrangian variables, with the number density given by Eq. (12) where n(ξ, 0) is

shown in Eq. (15), which also defines the initial condition n(x, 0) since ρ(0) = 1 by definition

(see Eq. (13)), the velocity field given by Eq. (11) with 1/T = ρ̇ and the electric field in

Eq. (23). In terms of physical coordinates, one has from Eq. (4) that x = ξ/ρ, t = τ , which

also imply the damped nonlinear oscillations of the electron gas cloud boundaries. Namely,

|ξ| ≤ ξ0 maps to |x| ≤ ξ0/ρ. In brief, the whole procedure is reducible to the dissipative

Pinney equation (17), with the approximate solution (21). However, it is necessary to have a

more detailed account on the validity conditions of the solution, regarding weak collisionality

and thermal effects prevalence. These issue are discussed in the immediate continuation.

A. Weak damping condition

In the context of the dissipative Pinney equation (17), the approximate solution (21)

holds for ν ≪ ω and not necessarily for ν ≪ ωp, which turns out to be a more stringent

constraint. However, a strongly collisional plasmas would barely remains 1D. Hence we

need ν ≪ ωp. It should be noticed that the undamped case is a particular case of the more

general treatment. For real applications it is necessary to measure the strength of the drag

force, in terms of suitable physical mechanisms, setting ν = 0 whenever possible. Besides,
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as apparent from Eq. (40) below, damping plays a regularizing rôle to avoid a collapsing

dynamics.

Hence, it is useful to reproduce at least a few explicit expressions of the damping rate.

For instance, it can be originated from electron-neutral collisions. In this case one has the

estimate

ν = nN < σ u >≈ nN πa
2
0 uT ≪ ωp , (24)

where the symbol <> denotes average, nN is the neutrals number density, σ ≈ πa20 the

electron-neutrals collisions cross section, a0 the Bohr radius and uT =
√
κBT/m the electrons

thermal velocity.

Also notice that considering the electron gas as a whole, the (elastic) electron-electron col-

lisions can not dissipate its momentum. However, another possibility considers an electron-

ion gas, where the electrons momentum could be dissipated into the ion species due to

electron-ion collisions. For fast processes where the average ions velocity ui can be neglected

to a first approximation, a drag term reduces to −ν(u − ui) ≈ −νu, with the damping

rate given by the Landau frequency νei of electron-ion collisions [43]. In this case, the weak

collisionality holds for

ν = νei =
2ωp

3

lnΛ

Λ
≪ ωp , Λ =

4πn0λ
3
D

3
, λD =

uT
ωp

. (25)

However, in such an alternative scheme from the start one needs to explicitly take into

account the ion background, which would slightly modify some of the analytic results in this

Section.

B. Pressure dominance: validity conditions

We can now analytically evaluate the pressure dominance condition. Specifically,

from comparison of the repulsive terms in Eq. (14) and using Eq. (15), it amounts to

3κBTξ/(mξ
2
0) ≫ −eE/m, where the electric field is given by Eq. (23). A short algebra then

yields

3κBT

mω2
pξ

2
0

≫ ρ3 f(ξ/ξ0) , f(ξ/ξ0) =
1

2

√
1−

(
ξ

ξ0

)2

+
arcsin(ξ/ξ0)

ξ/ξ0

 ≈ 1 . (26)

The last estimate happens because f(ξ/ξ0) does not change appreciably from unity in the

interval |ξ| ≤ ξ0, as seen in Fig. 5.
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FIG. 5: Function f(ξ/ξ0) from Eq. (26).

Finally, the most stringent constraint from the inequality in Eq. (26) is for the maximum

value ρ = ρmax ≈
√
ρ2eq + A2 + |A|, a return point obtained from the perturbative solu-

tion (21) where damping was neglected, for the sake of the estimate. Hence, the pressure

dominance assumption holds for

3κBT

mω2
pξ

2
0

≫
(√

ρ2eq + A2 + |A|
)3

≥
[
1

2

(
1 + ρ2eq + |1− ρ2eq|

)]3
, (27)

where the last inequality is due to the internal condition reported below Eq. (22). In terms

of the physical parameters, the inequality (27) unveils two subclasses, as follows.

1. Thermal dominated equilibrium

The thermal dominated equilibrium case corresponds to

ρ2eq ≥ 1 ⇒ ω4

ω4
p

≫ 3κBT

mξ20ω
2
≥ 1 . (28)

2. Harmonic confinement dominated equilibrium

Although in this Section the main repulsive influence in the electrons momentum equation

is always due to the pressure term, it can happens that the external force is so strong that

ρ2eq ≤ 1, which we refer to as the harmonic confinement dominated equilibrium case. It
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corresponds to

ρ2eq ≤ 1 ⇒ 1 ≥ 3κBT

mξ20ω
2
≫

ω2
p

ω2
. (29)

It must be observed that for all values of ρeq one needs ω2 ≫ ω2
p. This is because the

pressure term in the hydrodynamic equations is compensated by the confinement term,

which is proportional to ω2. Hence, to disregard the Coulomb repulsion (proportional to ω2
p)

in comparison to the thermal effects, necessarily ω2 ≫ ω2
p. The example in Fig. 3 fits the

harmonic confinement dominated scenario. For the corresponding parameters, the plasma is

almost ideal (Λ ≈ 107) and a suitable damping mechanism would be collisions with neutrals.

IV. NEGLIGIBLE THERMAL EFFECTS

When the Coulomb repulsion dominates the pressure effects, one can drop the ∼ κBT

term in Eq. (10). In this situation, the undamped problem was solved in [1], with an ionic

background but without external confinement. Our aim is the treatment of the ν ̸= 0 case

with harmonic trap, which was not fully performed before, to the best of our knowledge.

Ignoring thermal effects and differentiating all terms in Eq. (10) with respect to τ we get

∂u

∂τ 2
+ ν

∂u

∂τ
+ ω2u = 0 , (30)

whose general solution is

u = e−ντ/2
(
u(ξ, 0) cos(Ωτ) + ωX(ξ) sin(Ωτ)

)
, Ω =

√
ω2 − ν2/4 , (31)

where X(ξ) is at this stage an arbitrary function of the indicated argument and dimensions

of a length. We will consider only the more interesting case, where the damping is weak so

that Ω2 > 0.

Inserting the velocity field from Eq. (31) back into Eq. (10) gives

X(ξ) =
1

Ωω

(
−ω2ξ +

ω2
p

n0

∫
n(ξ, 0) dξ − νu(ξ, 0)

2

)
. (32)

Then, inserting X(ξ) from Eq. (32) into Eq. (7), the result is

n = n(ξ, 0)
[
1 +

e−ντ/2

Ω

∂u(ξ, 0)

∂ξ
sin(Ωτ) + 2

(ω2
p n(ξ, 0)

ω2 n0

− 1
)
ψ(τ)

]−1

, (33)

where

ψ(τ) =
1

2

(
1− e−ντ/2 cos(Ωτ)− ν e−ντ/2

2Ω
sin(Ωτ)

)
, (34)
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FIG. 6: Function ψ from Eq. (34) for different damping strengths. Upper curve, blue:

ν/Ω = 0; mid curve, orange: ν/Ω = 1/100; lower curve, green: ν/Ω = 1/10. One has

ψ → 1/2 as τ → ∞, except in the undamped case.

an oscillatory function frequently appearing in what follows.

The electric field follows from Eq. (9), with the choice E0(τ) = 0. To finalize the arbitrary

amplitude solution, the original spatial coordinate if found from Eq. (4) and reads

x = ξ +
e−ντ/2

Ω
u(ξ, 0) sin(Ωτ) + 2

(
−ξ +

ω2
p

ω2 n0

∫
n(ξ, 0) dξ

)
ψ(τ) . (35)

The results generalize those of chapter 3 of [1] and reproduce them in the dissipation-free

(ν = 0) and balanced (ω = ωp) case. Interestingly, combining Eqs. (9) and (35), one

concludes that asymptotically the electric and harmonic forces balance, or eE = −mω2 x

as τ → ∞, as expected.

Although the initial conditions n(ξ, 0), u(ξ, 0) remain rather general, a constraint arises

from the requirement of a positive definite number density, as follows.

A. Admissible initial conditions in the cold case

Unlike the thermal dominated case, corresponding to regular solutions by inspection,

in the cold case there is the need to determine in which circumstances explosive solutions

can take place. The mathematical conditions to avoid the associated multistream flow are

described e.g. in page 37 of [1], which we strictly follow here. Supposing n(ξ, 0) ≥ 0
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everywhere, from Eq. (33) one has n(ξ, τ) ≥ 0 for all time provided

ω2
p n(ξ, 0)

ω2 n0

+ F (ξ, τ) ≥ 0 , (36)

where

F (ξ, τ) = e−ντ/2 (a sin(Ωτ) + b cos(Ωτ)) , (37)

in terms of

a =
1

Ω

∂u(ξ, 0)

∂ξ
+

ν

2Ω

(
1−

ω2
p n(ξ, 0)

ω2 n0

)
, b = 1−

ω2
p n(ξ, 0)

ω2 n0

. (38)

It is easy to verify that in terms of time the minimum value of F (ξ, τ) occurs at τ = τ∗ such

that

Ωτ∗ = arctan

(
Ω a− ν b/2

Ω b+ ν a/2

)
+ π = π , (39)

where the last equality holds for ∂u(ξ, 0)/∂ξ = 0, which for simplicity we assume, to avoid

too cumbersome expressions. Evaluating then Eq. (36) at τ = τ∗ = π/Ω and isolating

n(ξ, 0), we derive
n(ξ, 0)

n0

≥ ω2

ω2
p

1

1 + exp[πν/(2Ω)]
, (40)

which is the required constraint on the initial number density, in the case of an uniform

initial velocity field u(ξ, 0). If the inequality (40) is violated, one has that eventually n(ξ, τ)

becomes negative in certain regions. Moreover, inversion of the Lagrangian variable trans-

form in Eq. (35) becomes multivalued in this case. From Eq. (40), it is apparent the striking

influence of the balance factor ω2/ω2
p, besides the regularizing rôle of damping, which allows

smaller values of n(ξ, 0).

The undamped (ν = 0) case can be easily evaluated from Eq. (36), without restriction

on initial velocity fields, with the result

n(ξ, 0)

n0

≥ ω2

2ω2
p

[
1 +

1

ω2

(
∂u(ξ, 0)

∂ξ

)2
]
. (41)

In brief, Eqs. (40) and (41) provide meaningful necessary conditions for regular solutions

in the cold case.

V. SAMPLE APPLICATIONS IN THE COLD CASE

Unlike the hot, or thermally dominated case, there is no strong restriction on the func-

tional form of the initial condition n(ξ, 0) and on the general form of the velocity field, when
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pressure effects can be disregarded. This allows the explicit construction of an infinite class

of solutions, provided the mild constraints of Section IVA are obeyed. As an illustration,

we consider two initial conditions: a localized, homogeneous electron gas and an an initial

condition describing a bunching of electrons.

A. Homogeneous initial condition

For the sake of illustration, suppose an uniform electron gas at τ = 0 restricted to |ξ| < ξ0,

with the following initial conditions,

n(ξ, 0) =

 n0 , |ξ| < ξ0 ;

0 , |ξ| > ξ0 ,
(42)

together with u(ξ, 0) = 0.

Using Eqs. (8), (31) and (33), the complete solution in the bulk of the electron cloud

(|ξ| < ξ0) is found as

n = n0

[
1 + 2

(
ω2
p

ω2
− 1

)
ψ(τ)

]−1

, (43)

u = exp(−ντ/2) sin(Ω τ) (ω2
p − ω2) ξ/Ω , E = −n0 e ξ/ε0 , (44)

where ψ(τ) is defined in Eq. (34).

The Lagrangian coordinate follows from Eq. (35) yielding (inside the electron’s bulk)

ξ = x

[
1 + 2

(
ω2
p

ω2
− 1

)
ψ(τ)

]−1

. (45)

Therefore the domain of the electrons cloud will be given by |x| ≤ ξ0
[
1 + 2

(
ω2
p/ω

2 − 1
)
ψ(τ)

]
,

asymptotically tending to |x| ≤ ω2
p ξ0/ω

2 since ψ(τ) → 1/2 as τ → ∞. In addition,

n → n0 ω
2/ω2

p in the long time limit. As expected, a stronger trapping ∼ ω2 produces

a more localized solution, while a bigger electronic density ∼ ω2
p yields the inverse effect.

Notice that the solution becomes stationary when ω = ωp, in which case the initial condition

represents an equilibrium state.

The number density in Eq. (43) is positive definite and well behaved for all time provided

ω2
p

ω2
>

1

1 + exp[π ν/(2Ω)]
, (46)
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in agreement with Eq. (40). The strict inequality sign in Eq. (46) is necessary to avoid

explosive solutions associated to wave breaking, where the density and the gradient of the

velocity field blow up to infinity in a finite time. Finally, since the electrons cloud is always

spatially homogeneous, temperature effects are automatically zero.

B. Gaussian initial condition

Suppose an infinite system with an initially Gaussian concentration of electrons,

n(ξ, 0) =
n0 ω

2

2ω2
p

(
1 + ∆ exp(−ξ2/ξ20)

)
, u(ξ, 0) = 0 , (47)

where ∆ and ξ0 are positive parameters. The constraint (40) is manifestly satisfied. Working

out Eq. (33), the exact number density is expressed as

n(ξ, τ) =
n0 ω

2

2ω2
p

[
1 + ∆exp(−ξ2/ξ20)

]
[
1 +

(
−1 + ∆exp(−ξ2/ξ20)

)
ψ(τ)

] , (48)

in terms of the same function ψ(τ) defined in Eq. (34). Asymptotically, one has n →

n0ω
2/ω2

p.

Carrying on the necessary steps, the velocity and electric fields become

u =
ω2 ξ0
2Ω

exp(−ν τ/2) sin(Ω τ)
[
− ξ

ξ0
+

√
π∆

2
Erf

( ξ
ξ0

)]
, (49)

E = −mω2 ξ0
2 e

[ ξ
ξ0

+

√
π∆

2
Erf

( ξ
ξ0

)]
. (50)

Remembering that τ = t, the remaining step of the integration rests on the inversion of

the Lagrangian coordinate transformation, which from Eq. (35) turns out to be

x

ξ0
=

ξ

ξ0
+

[
− ξ

ξ0
+

√
π∆

2
Erf

(
ξ

ξ0

)]
ψ(τ) , (51)

where Erf(s) = (2/
√
π)

∫ s

0
exp(−s′2) ds′ denotes the Error function in terms of a generic

argument s.

Although Eq. (51) represents a higher transcendental equation, it can be easily solved

numerically to obtain ξ as a function of (x, t), provided all pertinent parameters are fur-

nished. Due to 0 ≤ ψ(τ) < 1, it can be shown that the solution is unique. An example of

such a procedure is shown in Fig. 8.
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FIG. 7: Electric field from Eq. (50), with ∆ = 10, normalized to E0 = mω2ξ0/(2 e).

FIG. 8: Number density from Eq. (48), in the laboratory frame, normalized to the

asymptotic value neq = (ω2/ω2
p)n0, for ∆ = 10, ν/Ω = 1/10 and different times.

Using Eq. (10) it can be shown that the cold electron gas assumption is satisfied provided

κB T

m
≪

ω4
p ξ

2
0

ω2 ∆(1 + ∆)
. (52)

In particular, if there is no initial bunching (∆ ≈ 0), the electron gas becomes everywhere
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homogeneous (see Eq. (48)) and pressure effects are automatically negligible, as manifest

from Eq. (52).

VI. CONCLUSION

In this work, new arbitrary amplitude structures were derived for trapped charged parti-

cle systems, in terms of the Lagrangian variables method. Two classes of solutions have been

identified. One of them is entirely new and valid for thermally dominated systems, becoming

essentially reducible to the Pinney equation, a traditional ordinary differential equation in

nonlinear Physics. Moreover, in the case of non-ideal non-neutral plasma, dissipation can

be also handled by perturbation theory provided the damping is weak. The second class

of solutions, applicable to Coulomb repulsion dominated systems, significantly generalizes

the known results in the literature, now including collisional effects and an external har-

monic trap. The conditions for the validity of the solutions have been fully determined in

terms of the physical parameters, which helps the experimental verification of the prescribed

dynamics.

The spirit of this work can be generalized in several directions, allowing for more com-

plex geometries [44], relativistic effects [45, 46] and harmonic traps with a time-dependent

frequency or external forcing. For instance, the dissipative Pinney equation has well-known

accurate perturbative solutions in the weakly damped non-autonomous case [18]. In addi-

tion, the situation where thermal and Coulomb repulsion effects are of the same order can

in principle be handled to some extent, using a linearization procedure of the pressure term

[1]. These possibilities are under investigation and will be reported elsewhere.
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